A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Treadmill Exercise-Induced RNA m6A Methylation Modification in the Prevention of High-Fat Diet-Induced MASLD in Mice. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exercise is a well-recognized non-pharmacological strategy for preventing and managing metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as NAFLD). While the benefits of exercise are thought to involve epigenetic mechanisms, the precise role of RNA m6A methylation remains unclear. This study investigates how treadmill exercise modulates RNA m6A methylation to prevent MASLD in a high-fat diet (HFD)-induced mouse model. Male C57BL/6 mice were fed either a standard diet (SD) or HFD for 12 weeks, with a subset of HFD-fed mice undergoing treadmill exercise (HFD + Ex). Liver pathology and biochemical markers were assessed. RNA sequencing (RNA-Seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) were performed to identify differentially expressed genes (DEGs) and m6A methylation changes. Key candidate gene was validated through siRNA-mediated knockdown in AML-12 cells to assess its role in lipid metabolism. Treadmill exercise alleviated MASLD-related pathology and biochemical abnormalities. RNA-Seq identified 984 DEGs in the HFD vs. SD comparison and 544 in the HFD + Ex vs. HFD comparison. Intersection analysis identified 155 genes upregulated in MASLD and downregulated following exercise. MeRIP-seq revealed 225 hypermethylated and 208 hypomethylated m6A peaks in HFD + Ex vs. HFD groups. Integrative analysis highlighted , , and as key exercise-responsive genes. Silencing through siRNA-mediated knockdown reduced lipid accumulation and suppressed lipogenic gene expression, suggesting its role in exercise-mediated MASLD improvement. Treadmill exercise prevents MASLD by modulating RNA m6A methylation, with emerging as a potential regulator of lipid metabolism. These findings highlight epigenetic modulation as a key mechanism in exercise-induced liver protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192837PMC
http://dx.doi.org/10.3390/ijms26125810DOI Listing

Publication Analysis

Top Keywords

m6a methylation
20
rna m6a
16
treadmill exercise
16
pathology biochemical
8
sirna-mediated knockdown
8
lipid metabolism
8
hfd comparison
8
hfd hfd
8
exercise
7
hfd
7

Similar Publications