98%
921
2 minutes
20
: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques-Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)-in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). : In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. : Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels ( < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51-1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all < 0.001). ADMIRE outperformed SAFIRE in artifact reduction ( < 0.001), while SAFIRE achieved slightly higher image contrast scores ( < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations ( < 0.01). : Both IR techniques-ADMIRE and SAFIRE-achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192471 | PMC |
http://dx.doi.org/10.3390/diagnostics15121541 | DOI Listing |
Jpn J Radiol
September 2025
Department of Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
Background: Stroke, frequently associated with carotid artery disease, is evaluated using carotid computed tomography angiography (CTA). Dual-energy CTA (DE-CTA) enhances imaging quality but presents challenges in maintaining high image clarity with low-dose scans.
Objectives: To compare the image quality of 50 keV virtual monoenergetic images (VMI) generated using Deep Learning Image Reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-V (ASIR-V) algorithms under a triple-low scanning protocol in carotid CTA.
Nucleic Acids Res
September 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea.
Wearable bioelectronics have advanced dramatically over the past decade, yet remain constrained by their superficial placement on the skin, which renders them vulnerable to environmental fluctuations and mechanical instability. Existing microneedle (MN) electrodes offer minimally invasive access to dermal tissue, but their rigid, bulky design-often 100 times larger and 10,000 times stiffer than dermal fibroblasts-induces pain, tissue damage, and chronic inflammation, limiting their long-term applicability. Here, a cell-stress-free percutaneous bioelectrode is presented, comprising an ultrathin (<2 µm), soft MN (sMN) that dynamically softens via an effervescent structural transformation after insertion.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, M5T 0S8, Canada.
Accurate brain signal recording and precise electrode placement are critical for the success of neuromodulation therapies such as deep brain stimulation (DBS). Addressing these challenges requires deep brain electrodes that provide high-quality, stable recordings while remaining compatible with high-resolution medical imaging modalities like magnetic resonance imaging (MRI). Moreover, such electrodes shall be cost-effective, easy to manufacture, and patient-compatible.
View Article and Find Full Text PDFNeuropharmacology
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:
Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.
View Article and Find Full Text PDF