98%
921
2 minutes
20
Background: Brain metastasis occurs in 40-50% of lung cancer patients and is associated with poor prognosis. This study aimed to identify potential exosomal biomarkers for the early detection of brain metastasis in lung cancer using a comprehensive multi-omics approach.
Methods: Using a lung cancer mouse model, which develops brain metastasis, we collected serum samples at different stages (control, 6 weeks for lung cancer, and 10 weeks for brain metastasis). We profiled the contents of serum-derived exosomes using small RNA sequencing and LC-MS/MS proteomic analysis, and assessed the clinical relevance of candidate biomarkers using publicly available patient datasets.
Results: RNA sequencing identified 11 differentially expressed miRNAs across disease progression, with miR-206-3p showing significant upregulation during brain metastasis. Pathway analysis of miR-206-3p targets revealed enrichment in cancer-related pathways, including Hippo, MAPK, Ras, and PI3K-Akt signaling. Proteomic analysis revealed 77 proteins specifically upregulated in the brain metastasis stage, with vinculin (VCL) emerging as a promising marker. While VCL expression decreased in lung tissues and showed no significant changes in brain tissues, its levels were significantly elevated in serum-derived exosomes during brain metastasis. Clinical database analysis revealed that higher VCL expression correlated with poor patient survival.
Conclusions: Our study identified exosomal miR-206-3p and VCL as promising non-invasive biomarkers for brain metastasis in lung cancer using the mouse model. These findings provide new opportunities for early detection and monitoring of brain metastasis, potentially enabling timely therapeutic intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191069 | PMC |
http://dx.doi.org/10.3390/cancers17121929 | DOI Listing |
PLoS One
September 2025
Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
Background: Attention to existential needs has become part of daily treatment. Studies have described the concepts of existential experiences and existential interventions. However, a consensus or conceptual clarity regarding an existential approach in cancer patients is currently missing.
View Article and Find Full Text PDFNeurosurg Rev
September 2025
Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F-75014, France.
Awake craniotomy is the gold standard to achieve maximal safe resection of brain lesions located within eloquent areas. There are no established guidelines to assess patient's eligibility for awake craniotomy by weight class. This study assesses feasibility, safety, and efficacy of awake surgery by weight classes through an observational, retrospective, single-institution cohort analysis (2010-2024) of 526 awake craniotomies.
View Article and Find Full Text PDFNeurosurg Rev
September 2025
Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece.
Background: The aim of this review is to present the role of intraoperative flow cytometry (IFC) in the intracranial tumor surgery. This scoping review aims to summarize current evidence on the intraoperative use of IFC in patients with intracranial tumors.
Methods: A comprehensive literature search was conducted in the Medline, Cochrane and Scopus databases up to January 21, 2025.
JCI Insight
September 2025
The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children; Toronto, Canada.
More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.
View Article and Find Full Text PDFPurpose: WU-KONG1B (ClinicalTrials.gov identifier: NCT03974022) is a multinational phase II, dose-randomized study to assess the antitumor efficacy of sunvozertinib in pretreated patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor () exon 20 insertion mutations (exon20ins).
Methods: Eligible patients with advanced-stage exon20ins NSCLC were randomly assigned by 1:1 ratio to receive sunvozertinib 200 mg or 300 mg once daily (200 and 300 mg-rand cohorts).