98%
921
2 minutes
20
Background/objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This study aimed to investigate the role of DAPK1 in high-grade serous ovarian cancer (HGSOC) and to evaluate the therapeutic potential of restoring its kinase activity, including the use of truncated DAPK1 variants, to overcome chemoresistance and enhance tumor suppression.
Methods: Gene expression analysis was performed on ovarian cancer tissues compared to benign controls to assess DAPK1 downregulation and its epigenetic regulation. Prognostic relevance was evaluated in a cohort of 1436 HGSOC patient samples. Functional restoration of DAPK1 was conducted in HGSOC cell lines and patient-derived primary tumor cells using vector-based expression or in vitro-transcribed (IVT) DAPK1 mRNA, including the application of truncated DAPK1 (ΔDAPK1) forms. To assess apoptosis, Caspase activation assays, 2D-colony formation assays, and cell survival assays were performed. To analyze the reactivation of DAPK1 downstream signaling, phosphorylation of p53 at Ser20 and the expression of p53 target proteins were examined. Chemosensitivity to Paclitaxel and Cisplatin was quantified by changes in IC values.
Results: DAPK1 expression was significantly downregulated in ovarian cancer compared to benign tissue, correlating with epigenetic silencing, and showed prognostic value in early-stage HGSOC. Restoration of DAPK1 activity, including ΔDAPK1 variants, led to phosphorylation of p53 Ser20, increased expression of p53 target proteins, and Caspase-dependent apoptosis. Reactivation of DAPK1 sensitized both established HGSOC cell lines and patient-derived ascites cells to Paclitaxel and Cisplatin. These effects occurred through both p53-dependent and p53-independent pathways, enabling robust tumor suppression even in p53-mutant contexts.
Conclusions: Reactivation of DAPK1, particularly through truncated variants, represents a promising therapeutic strategy to overcome chemoresistance in HGSOC. The dual mechanisms of tumor suppression provide a strong rationale for developing DAPK1-based therapies to enhance the efficacy of standard chemotherapy, especially in patients with chemoresistant or p53-deficient tumors. Future work should focus on optimizing delivery approaches for DAPK1 variants and assessing their synergistic potential with emerging targeted treatments in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190691 | PMC |
http://dx.doi.org/10.3390/cancers17121910 | DOI Listing |
Menopause
September 2025
Department of Gynecologic Oncology, Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY.
Objective: Endometrial cancer (EC) and epithelial ovarian cancer (EOC) affect women of all ages, and the incidence of endometrial cancer in premenopausal women is rising. Menopause can be detrimental to longevity and quality of life, but evidence suggests estrogen therapy (ET) is safe in these patients. The purpose of this study was to evaluate the practice patterns of gynecologists and gynecologic oncologists (GYO) in the United States in regards to prescription of ET to gynecologic cancer patients.
View Article and Find Full Text PDFPLoS One
September 2025
Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China.
MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Ophthalmology Unit, Cannizzaro Hospital, 95126, Catania, Italy.
Antibody-drug conjugates (ADCs) represent a promising therapeutic approach in gynecologic cancers, particularly ovarian and cervical malignancies. Agents such as mirvetuximab soravtansine, and tisotumab vedotin, targeting folate receptor alpha and tissue factor, respectively, reported clinical efficacy in patients with limited options. However, their use is associated with ocular toxicities, including keratopathy, blurred vision, and dry eye, which may impact adherence and quality of life.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Tumor-associated macrophages (TAMs) act as a vital player in the immunosuppressive tumor microenvironment (TME) and have received widespread attention in the treatment of cancer in recent times. Nevertheless, simultaneously inducing TAM repolarization and strengthening their phagocytic ability on cancer cells is still a significant challenge. Ferroptosis has received widespread attention due to its lethal effects on tumor cells, but its role in TAMs and its impact on tumor progression have not yet been defined.
View Article and Find Full Text PDFCancer Immunol Res
September 2025
The Wistar Institute, Philadelphia, PA, United States.
Ovarian cancer remains a major health threat with limited treatment options available. It is characterized by immunosuppressive tumor microenvironment (TME) maintained by tumor-associated macrophages (TAMs) hindering anti-tumor responses and immunotherapy efficacy. Here we show that targeting retinoblastoma protein (Rb) by disruption of its LxCxE cleft pocket causes preferential cell death in Rbhigh M2 polarized or M2-like Rbhigh immunosuppressive TAMs by induction of ER stress, p53 and mitochondria-related cell death pathways.
View Article and Find Full Text PDF