98%
921
2 minutes
20
Skeletal muscles and bones maintain musculoskeletal system function through their collaborative interaction, whereby muscles regulate bone metabolism via mechanical coupling. An increasing number of studies have shown that various cytokines secreted by skeletal muscles during exercise closely regulate the balance of bone homeostasis. Interleukin-6 (IL-6), one of the first muscle-secreted factors to be discovered, not only plays an important role in regulating the function of the muscle itself but also regulates bone metabolic processes in a bidirectional manner through multiple complex signal transduction pathways, thereby affecting the balance between bone formation and bone resorption. The exact mechanism by which IL-6 regulates bone metabolism is not fully understood, and there are few summaries on how exercise affects bone metabolism through IL-6 from skeletal muscles. Accordingly, this study will take skeletal muscle-derived IL-6 as an entry point to explore how the cross-organ regulatory activities of the muscles targeting bones during exercise affect bone metabolic processes. This study also aims to improve the mechanism of muscle-bone crosstalk under the effect of exercise and provide a theoretical basis and clinical diagnosis and treatment ideas from multiple perspectives for exercise to improve bone health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190190 | PMC |
http://dx.doi.org/10.3390/biom15060893 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Jalisco, México.
The objective of this study was to evaluate the concentration and integrity index of circulating cell-free DNA (ccf-DNA) as biomarkers for the detection and monitoring of minimal residual disease (MRD) in pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL). Comparison with a validated methodology for the quantification of monoclonal rearrangements of the IGH gene was made. Peripheral blood and bone marrow samples were collected from 10 pediatric patients with B-ALL at diagnosis, remission, and maintenance phases.
View Article and Find Full Text PDFOsteoporos Int
September 2025
Department of Rheumatology, Univ. Lille, CHU Lille, MABlab ULR 4490, 59000, Lille, France.
Medications like liraglutide 3.0 mg daily (Saxenda®; Novo Nordisk) and semaglutide 2.4 mg weekly (Wegovy®; Novo Nordisk), which are glucagon-like peptide-1 receptor agonists (GLP-1Ra), have been sanctioned for prolonged weight management in people living with obesity (PwO).
View Article and Find Full Text PDFStem Cells Int
August 2025
Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China.
Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.
View Article and Find Full Text PDFMagn Reson Lett
May 2025
GE Healthcare, Beijing, 100176, China.
This study explored the application value of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) technology in the early diagnosis of ageing osteoporosis (OP). 172 participants were enrolled and underwent magnetic resonance imaging (MRI) examinations on a 3.0T scanner.
View Article and Find Full Text PDFInt J Endocrinol
August 2025
Department of Geriatrics, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID-19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID-19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.
View Article and Find Full Text PDF