98%
921
2 minutes
20
Synbiotics can be used to reduce intestinal inflammation and mitigate dysbiosis in dogs with chronic inflammatory enteropathy (CIE). Prior research has not assessed the colonic mucosal ultrastructure of dogs with active CIE treated with synbiotics, nor has it determined a possible association between morphologic injury and signaling pathways. Twenty client-owned dogs diagnosed with CIE were randomized to receive either a hydrolyzed diet (placebo; PL) or a hydrolyzed diet supplemented with synbiotic-IgY (SYN) for 6 weeks. Endoscopic biopsies of the colon were obtained for histopathologic, ultrastructural, and molecular analyses and were compared before and after treatment. Using transmission electron microscopy (TEM), an analysis of the ultrastructural alterations in microvilli length (MVL), mitochondria (MITO), and rough endoplasmic reticulum (ER) was compared between treatment groups. To explore potential signaling pathways that might modulate MITO and ER stress, a transcriptomic analysis was also performed. The degree of mucosal ultrastructural pathology differed among individual dogs before and after treatment. Morphologic alterations in enterocytes, MVL, MITO, and ER were detected without significant differences between PL and SYN dogs prior to treatment. Notable changes in ultrastructural alterations were identified post-treatment, with SYN-treated dogs exhibiting significant improvement in MVL, MITO, and ER injury scores compared to PL-treated dogs. Transcriptomic profiling showed many pathways and key genes to be associated with MITO and ER injury. Multiple signaling pathways and their associated genes with protective effects, including fibroblast growth factor 2 (), fibroblast growth factor 7 (), fibroblast growth factor 10 (), synaptic Ras GTPase activating protein 1 (), RAS guanyl releasing protein 2 (), RAS guanyl releasing protein 3 (), thrombospondin 1 (), colony stimulating factor 1 (), colony stimulating factor 3 (), interleukin 21 receptor (), collagen type VI alpha 6 chain (), ectodysplasin A receptor (), forkhead box P3 (), follistatin (), gremlin 1 (), myocyte enhancer factor 2B (), neuregulin 1 (), collagen type I alpha 1 chain (), hepatocyte growth factor (), 5-hydroxytryptamine receptor 7 (), and platelet derived growth factor receptor beta (), were upregulated with SYN treatment. Differential gene expression was associated with improved MITO and ER ultrastructural integrity and a reduction in oxidative stress. Conversely, other genes, such as protein kinase cAMP-activated catalytic subunit beta (), phospholipase A2 group XIIB (), calmodulin 1 (), calmodulin 2 (), and interleukin-18 (), which have harmful effects, were downregulated following SYN treatment. In dogs treated with PL, genes including and were upregulated, while other genes, such as , , , , , and , were downregulated. Dogs with CIE have colonic ultrastructural pathology at diagnosis, which improves following synbiotic treatment. Ultrastructural improvement is associated with an upregulation of protective genes and a downregulation of harmful genes that mediate their effects through multiple signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189513 | PMC |
http://dx.doi.org/10.3390/antiox14060727 | DOI Listing |
Turk J Pediatr
September 2025
Department of Pediatric Hematology and Oncology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
Background: The expression and clinical correlation of BRAFV600E mutation and programmed cell death-1 ligand 1 (PD-L1) in children with Langerhans cell histiocytosis (LCH) have been reported, but the conclusions of previous studies are inconsistent. In addition, it has been reported that elevated cathepsin S (CTSS) expression is associated with various cancers. However, there is currently no research on the correlation between CTSS and LCH.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Medical Oncology, Early Phase Unit, Georges-François Leclerc Centre, Dijon, France.
Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China.
Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).
View Article and Find Full Text PDF