Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: MicroRNAs are small non-coding RNAs that regulate gene expression post-transcriptionally and show differential expression in various tissues with aging phenotypes. Detectable in circulation, extracellular microRNAs reflect (patho)physiological processes and hold promise as biomarkers for healthy aging and age-related diseases. This study aimed to explore plasma extracellular microRNAs as a biological aging indicator and their associations with health outcomes using population-level data.

Methods: We quantified plasma expression levels of 2083 extracellular microRNAs using targeted RNA-sequencing in 2684 participants from the population-based Rotterdam Study cohort. The training and test sets included 1930 participants from the advanced-aged initial and second subcohort (RS-I/RS-II; median age: 70.6), while the validation set comprised 754 participants from the middle-aged fourth subcohort (RS-IV; median age: 53.5). Based on 591 microRNAs well-expressed in plasma, we examined differential expression of microRNAs with chronological age, PhenoAge-a composite score of age and nine multi-system blood biomarkers-the frailty index, and mortality. Next, elastic net models were employed to construct composite microRNA-based aging biomarkers predicting chronological age (mirAge), PhenoAge (mirPA), frailty index (mirFI), and mortality (mirMort). The association of these aging biomarkers with different age-related health outcomes was assessed using Cox Proportional Hazard, linear regression, and logistic regression models in the test and validation sets.

Results: We identified 188 microRNAs differentially expressed with chronological age within the RS-I/RS-II advanced-aged population (n = 1158, n = 772), of which 177 microRNAs (94.1%) were replicated in the middle-aged RS-IV subcohort (n = 754). Moreover, 227 miRNAs showed robust associations with PhenoAge, 61 with FI, and 16 with 10-year mortality independent of chronological age. Subsequently, we constructed four plasma microRNA-based aging biomarkers: mirAge with 108, mirPA with 153, mirFI with 81, and mirMort with 50 miRNAs. Elevated scores on these microRNA-based aging biomarkers were associated with unfavorable health outcomes, including lower subjective physical functioning and self-reported health and increased mortality and frailty risk, but not with first- or multi-morbidity. Overall, larger effect estimates were observed for mirPA, mirFI, and mirMort compared to mirAge.

Conclusions: This study describes distinct plasma microRNA-aging signatures and introduces four microRNA-based aging biomarkers with the potential to identify accelerated aging and age-related decline, providing insights into the intricate process of human aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188677PMC
http://dx.doi.org/10.1186/s13073-025-01437-5DOI Listing

Publication Analysis

Top Keywords

aging biomarkers
20
health outcomes
16
chronological age
16
microrna-based aging
16
extracellular micrornas
12
aging
11
micrornas
8
differential expression
8
aging age-related
8
median age
8

Similar Publications

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.

View Article and Find Full Text PDF

Colorectal cancer (CRC) constitutes a significant global health challenge, accounting for a considerable proportion of cancer cases and associated mortality. Projections indicate a potential increase in new cases by 2040, attributed to demographic factors such as aging and population growth. Although advancements in the understanding of CRC pathophysiology have broadened treatment options, challenges such as drug resistance and adverse effects persist, highlighting the necessity for enhanced diagnostic methodologies.

View Article and Find Full Text PDF

Background: Chronic stress can significantly impact health, leading to conditions such as cardiovascular disease and mental health issues. Detecting chronic stress in older adults with intellectual disabilities (ID) is challenging, but measuring scalp hair glucocorticoids (HairGC) may offer a solution. This study aims to investigate the feasibility of measuring HairGC in older adults with ID and assess reasons for failed sample collection and analysis.

View Article and Find Full Text PDF

Epigenetic Age Acceleration and Cardiometabolic Biomarkers in Response to Weight-Loss Dietary Interventions Among Obese Individuals: The MACRO Trial.

Aging Cell

September 2025

Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.

Epigenetic clocks have emerged as promising biomarkers of aging, but their responsiveness to lifestyle interventions and relevance for short-term changes in cardiometabolic health remain uncertain. In this study, we examined the associations between three epigenetic aging measures (DunedinPACE, PCPhenoAge acceleration, and PCGrimAge acceleration) and a broad panel of cardiometabolic biomarkers in 144 obese participants from the MACRO trial, a 12-month weight-loss dietary intervention comparing low-carbohydrate and low-fat diets. At pre-intervention baseline, DunedinPACE was significantly associated with several cardiometabolic biomarkers (FDR [false discovery rate] < 0.

View Article and Find Full Text PDF