Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maturation of human pluripotent stem (hPS) cell-derived cardiomyocytes is critical for their use as a model system. Here we mimic human heart maturation pathways in the setting of hPS cell-derived cardiac organoids (hCOs). Specifically, transient activation of 5' AMP-activated protein kinase and estrogen-related receptor enhanced cardiomyocyte maturation, inducing expression of mature sarcomeric and oxidative phosphorylation proteins, and increasing metabolic capacity. hCOs generated using the directed maturation protocol (DM-hCOs) recapitulate cardiac drug responses and, when derived from calsequestrin 2 (CASQ2) and ryanodine receptor 2 (RYR2) mutant hPS cells exhibit a pro-arrhythmia phenotype. These DM-hCOs also comprise multiple cell types, which we characterize and benchmark to the human heart. Modeling of cardiomyopathy caused by a desmoplakin (DSP) mutation resulted in fibrosis and cardiac dysfunction and led to identifying the bromodomain and extra-terminal inhibitor INCB054329 as a drug mitigating the desmoplakin-related functional defect. These findings establish DM-hCOs as a versatile platform for applications in cardiac biology, disease and drug screening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259470PMC
http://dx.doi.org/10.1038/s44161-025-00669-3DOI Listing

Publication Analysis

Top Keywords

maturation human
8
cardiac organoids
8
hps cell-derived
8
human heart
8
maturation
5
cardiac
5
human cardiac
4
organoids enables
4
enables complex
4
complex disease
4

Similar Publications

Previous studies have shown that the pre-transplant C-reactive protein (CRP)/platelet ratio (CP ratio) is a predictor of survival. The aim of this multicenter retrospective study was to evaluate the clinical significance of CP ratio in patients with malignant lymphoma (ML) who underwent allogeneic hematopoietic stem cell transplantation (alloHCT). The cohort included patients with ML who underwent first alloHCT from 2007 to 2021.

View Article and Find Full Text PDF

This report presents the case of a 62-year-old male who presented with a two-month history of right flank pain and decreased appetite. Clinical evaluation revealed a palpable, non-tender mass in the right flank, while laboratory tests demonstrated mild anemia (hemoglobin 9.3 g/dL) with otherwise normal renal function.

View Article and Find Full Text PDF

Kaempferol as a multifaceted immunomodulator: implications for inflammation, autoimmunity, and cancer.

Front Immunol

September 2025

Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.

Kaempferol (KMF) is a dietary flavonoid exhibiting profound immunomodulatory effects across multiple immune cell populations. This review synthesizes current insights into how KMF regulates diverse immune cell populations and its therapeutic potential in inflammatory and immune-related disorders. KMF exhibits multifaceted effects on T cells.

View Article and Find Full Text PDF

Background: Tertiary lymphoid structures (TLSs) are linked to prognosis in esophageal squamous cell carcinoma (ESCC), but whether the distribution, abundance, and maturity of TLSs affect therapeutic efficacy and prognosis in ESCC treated with neoadjuvant chemoradiotherapy plus immunotherapy (NRCI) remains unclear. We explored TLS characteristics and correlated them with patient survival.

Methods: A total of 157 resectable ESCC patients treated with neoadjuvant therapy between September 2020 and May 2023 were divided into NRCI (n=49) and neoadjuvant chemoimmunotherapy (NCI, n=108) groups.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.

View Article and Find Full Text PDF