Multiscale dynamic immunomodulation by a nanoemulsified Trojan-TLR7/8 adjuvant for robust protection against heterologous pandemic and endemic viruses.

Cell Mol Immunol

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Science and Technology, Department of Nano Engineering, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Republic of Korea.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The demand for safe vaccines that ensure long-term and broad protection against multiple viral variants has dramatically increased after the emergence of catastrophic infectious diseases such as COVID-19. To ensure long-term and broad protection against heterologous virus variants, antigen-specific polyfunctional T cells should be orchestrated with the activation of follicular helper T (T) cells and germinal center (GC) B cells. Herein, we suggest a novel engineered nanoadjuvant (SE(Trojan-TLR7/8a)) that enhances the migration of nonexhausted antigen-presenting cells (APCs) into lymph nodes and elicits the activation of T cells, the generation of GC B cells, and polyfunctional T cells via multiscale dynamic immunomodulation through squalene nanoemulsion (SE)-mediated macroscopic control of vaccine delivery and Trojan-TLR7/8a-enabled dynamic and sustained activation of APCs at the cellular level. SE(Trojan-TLR7/8a) can be lyophilized, reduce systemic toxicity, and outperform current commercial vaccine adjuvants (Alum or AS03) and mRNA vaccines. SE(Trojan-TLR7/8a) ensures cross-protection against diverse influenza and SARS-CoV-2 variants, providing 100% protection while maintaining a healthy state. SE(Trojan-TLR7/8a) also sustains a potent T-cell response in an aged ferret model of SFTSV infection. SE(Trojan-TLR7/8a) suggested herein provides a novel vaccine design principle for dynamic modulation at the multiscale level and demonstrates long-term and broad protective immunity against emerging pandemic and endemic infectious viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12398497PMC
http://dx.doi.org/10.1038/s41423-025-01306-6DOI Listing

Publication Analysis

Top Keywords

long-term broad
12
multiscale dynamic
8
dynamic immunomodulation
8
protection heterologous
8
pandemic endemic
8
ensure long-term
8
broad protection
8
polyfunctional cells
8
cells
7
setrojan-tlr7/8a
5

Similar Publications

Diagnostic Challenges of Six-Pathogen Detected by mNGS in an Immunocompromised ICU Patient with Severe Community-Acquired Pneumonia-Induced Sepsis: A Case Report and Literature Review.

Infect Drug Resist

September 2025

Department of Emergency, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, People's Republic of China.

Introduction: Severe community-acquired pneumonia (SCAP) in immunocompromised patients is often caused by rare atypical pathogens, which are difficult to detect using conventional microbiological tests (CMTs) and can progress to sepsis in severe cases. Metagenomic next-generation sequencing (mNGS), an emerging pathogen detection technique, enables rapid identification of mixed infections and provides valuable guidance for clinical treatment decisions. SCAP-induced sepsis caused by a six-pathogen co-infection has not been previously reported, but interpretation remains a challenge.

View Article and Find Full Text PDF

Review of engineered magnetic chitosan nanoparticles for drug delivery: Advances, challenges, and future prospects.

Int J Biol Macromol

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:

Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.

View Article and Find Full Text PDF

Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).

View Article and Find Full Text PDF

Metabolic Flexibility in Insects: Patterns, Mechanisms, and Implications.

Annu Rev Entomol

September 2025

2Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.

The evolutionary success of insects may be partly attributed to their profound ability to adjust metabolism in response to environmental stress or resource variability at a range of timescales. Metabolic flexibility encompasses the ability of an organism to adapt or respond to conditional changes in metabolic demand and tune fuel oxidation to match fuel availability. Here, we evaluate the mechanisms of metabolic flexibility in insects that are considered short-term, medium-term, and long-term responses.

View Article and Find Full Text PDF

Autoimmune hemolytic anemia (AIHA) is uncommon in the pediatric population, particularly when it manifests as severe anemia. AIHA is characterized by a positive direct antiglobulin test (DAT) and immune-mediated red blood cell (RBC) destruction. AIHA is subclassified on the basis of the thermal characteristics of autoantibody into warm, cold, and mixed.

View Article and Find Full Text PDF