A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Contrast-enhanced image synthesis using latent diffusion model for precise online tumor delineation in MRI-guided adaptive radiotherapy for brain metastases. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) is a promising technique for long-course radiotherapy of large-volume brain metastasis (BM), due to the capacity to track tumor changes throughout treatment course. Contrast-enhanced T1-weighted (T1CE) MRI is essential for BM delineation, yet is often unavailable during online treatment concerning the requirement of contrast agent injection. This study aims to develop a synthetic T1CE (sT1CE) generation method to facilitate accurate online adaptive BM delineation.We developed a novel ControlNet-coupled latent diffusion model (CTN-LDM) combined with a personalized transfer learning strategy and a denoising diffusion implicit model inversion method to generate high quality sT1CE images from online T2-weighted (T2) or fluid attenuated inversion recovery (FLAIR) images. Visual quality of sT1CE images generated by the CTN-LDM was compared with other deep learning models. BM delineation results using the combination of our sT1CE images and online T2/FLAIR images were compared with the results solely using online T2/FLAIR images, which is the current clinical method.Visual quality of sT1CE images from our CTN-LDM was superior to competing models both quantitatively and qualitatively. Leveraging sT1CE images, radiation oncologists achieved significant higher precision of adaptive BM delineation, with average Dice similarity coefficient of 0.93 ± 0.02 vs. 0.86 ± 0.04 (0.01), compared with only using online T2/FLAIR images.The proposed method could generate high quality sT1CE images and significantly improve accuracy of online adaptive tumor delineation for long-course MRIgART of large-volume BM, potentially enhancing treatment outcomes and minimizing toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ade845DOI Listing

Publication Analysis

Top Keywords

st1ce images
24
quality st1ce
16
online t2/flair
12
images
9
latent diffusion
8
diffusion model
8
online
8
tumor delineation
8
adaptive radiotherapy
8
online adaptive
8

Similar Publications