A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A reusable hydrogel biosensor array with electrically responsive hydrogel interfaces for noninvasive locating of perforating arteries. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Achieving accurate locating of perforating arteries (PAs) has great clinical value in various biomedical applications, such as free flap transfer. However, the anatomical variability of these arteries presents a major challenge in PA locating, and existing methods have various disadvantages, limiting their applications. Here, we propose a reusable and flexible hydrogel biosensor array for noninvasive, precise, and efficient PA locating. Particularly, we develop electrically responsive hydrogels to establish rapidly detachable device/hydrogel interfaces, endowing the reusability of the biosensor array. Meanwhile, the adhesion of hydrogel/skin interfaces is also enhanced to facilitate high-fidelity signal acquisition. By analyzing the photoplethysmography (PPG) infrared (IR) signals, the biosensor array can accurately and responsively locate PAs across different types of free flaps in clinical cases, outperforming existing techniques. This biosensor array represents a promising platform for PA locating. The strategy of hydrogel interface design paves the way for the development of reusable flexible electronics in biomedical applications to avoid cross-infection and reduce device costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190022PMC
http://dx.doi.org/10.1126/sciadv.adw6166DOI Listing

Publication Analysis

Top Keywords

biosensor array
20
hydrogel biosensor
8
electrically responsive
8
locating perforating
8
perforating arteries
8
biomedical applications
8
reusable flexible
8
biosensor
5
array
5
locating
5

Similar Publications