98%
921
2 minutes
20
The parameter variations in the aquitard have an important influence on the migration laws of contaminants in the aquitard. In order to study the influence of dynamic changes in parameters during pumping on the migration laws of Light Non-aqueous Phase Liquid (LNAPL) in the aquitard, the one-dimensional consolidation and groundwater flow equations for the aquitard were employed to derive the governing equations for the migration of LNAPL in the aquitard. A self-designed experimental platform was developed to investigate the effects of the pore water pressure, consolidation deformation, and pumping rate on LNAPL migration during pumping. The laboratory experimental results indicated that during pumping, the migration behavior of LNAPL in the aquitard typically exhibited a trend toward the pumping well and the overlying aquifer. The closer to the pumping well, the greater the change in the pore water pressure, the greater the amount of consolidation deformation, the earlier the state of densification, and the slower the migration rate of LNAPL in the aquitard. The nearer to the bottom of the aquitard, the larger the amount of consolidation deformation in the aquitard and the slower the migration rate of LNAPL in the aquitard. Also, the pumping rate had an important influence on groundwater flow movement and contaminant migration. The characteristics of parameter variations in the aquitard and laws of LNAPL migration during pumping were systematically studied and analyzed; these research results can provide a reference for the prediction and remediation of LNAPL in contaminated sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12197498 | PMC |
http://dx.doi.org/10.3390/toxics13060471 | DOI Listing |
Toxics
June 2025
College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China.
The parameter variations in the aquitard have an important influence on the migration laws of contaminants in the aquitard. In order to study the influence of dynamic changes in parameters during pumping on the migration laws of Light Non-aqueous Phase Liquid (LNAPL) in the aquitard, the one-dimensional consolidation and groundwater flow equations for the aquitard were employed to derive the governing equations for the migration of LNAPL in the aquitard. A self-designed experimental platform was developed to investigate the effects of the pore water pressure, consolidation deformation, and pumping rate on LNAPL migration during pumping.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2024
School of Earth Sciences and Engineering, Hohai University, Nanjing, 210098, China.
Research on the migration behaviors of contaminants in the aquitard has been deficient for an extended period. Clay is commonly employed as an impermeable layer or barrier to stop the migration of contaminants. However, under certain conditions, the clay layer may exhibit permeability to water, thereby allowing contaminants to infiltrate and potentially contaminate adjacent aquifers.
View Article and Find Full Text PDF