Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Significance: The imaging of cerebral blood flow in small rodents is crucial for a better understanding of brain functions in healthy and diseased conditions. Existing methods often struggle to provide both superficial and deep tissue blood flow measurements in a non-invasive, flexible, and reliable manner, creating a need for an integrated platform that addresses these limitations.

Aim: We aim to design and develop a multi-modal laser speckle-based imaging platform and associated algorithms to image superficial and deep tissue cerebral blood flow in small rodents.

Approach: A modular design has been adopted to integrate laser speckle contrast imaging and multi-speckle diffuse correlation tomography to a single cerebral blood flow imaging platform for small rodents with an independent module for animal holding and handling. A topographic imaging method, equipped with a filter to remove surface artifacts, was incorporated to image cerebral blood flow changes in response to forepaw and olfactory stimuli activations, with the skull and scalp kept intact.

Results: A significant increase in blood flow was found in the olfactory bulbs of mice post-stimulation by various odors ( ). Similarly, forepaw stimulation resulted in a significant increase in blood flow in the contralateral side of the somatosensory cortex with the application of the filter for skull and scalp intact, skull intact, and skull removed cases ( ).

Conclusions: We have validated our system through functional studies, demonstrating its capability to detect enhanced blood flow changes across the olfactory bulbs and somatosensory cortex in rodents with potential for broad applications in preclinical research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185355PMC
http://dx.doi.org/10.1117/1.NPh.12.2.025017DOI Listing

Publication Analysis

Top Keywords

blood flow
36
cerebral blood
20
deep tissue
12
small rodents
12
blood
9
flow
9
laser speckle-based
8
speckle-based imaging
8
tissue cerebral
8
flow imaging
8

Similar Publications

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF

The present investigation sought to determine the cardiovascular responses to a commercially available KAATSU cuff system with rhythmic cuff inflation-deflation periods during leg exercise. Seventeen participants performed two-legged knee flexion/extension exercise at 25% of peak work rate (WR) with bilateral KAATSU cuffs applied to the proximal thigh (KAATSU) or work-rate matched control exercise (CTL). During KAATSU trials, the cuffs were set to Cycle Mode (repeated 30-s inflation; 5-s deflation) at progressively increasing cuff pressure (150-220 mmHg).

View Article and Find Full Text PDF

Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.

View Article and Find Full Text PDF

Temperature-sensitive Transient Receptor Potential (TRP) channels contribute to modulating skin vascular tone. Their role in Raynaud's Phenomenon (RP) remains unknown. We aimed to investigate TRPs expression in the skin, along with microvascular reactivity to cooling in patients with primary and secondary RP, compared with healthy subjects.

View Article and Find Full Text PDF

Oxidative stress has attracted attention as an indicator of exercise load. Minimizing the impact on the body is essential during underwater treadmill exercise. Here, we conducted an exploratory study of the effects of dermal suction, which has been reported to improve blood flow in healthy dogs, prior to underwater treadmill exercise.

View Article and Find Full Text PDF