98%
921
2 minutes
20
Virus-infected cells, called virocells, impact host metabolic functions, resources, and ecosystem processes, but the effects of nutrient limitation remain less well understood. Here, we leverage transcriptomic, proteomic, and endo- and exo-metabolomic data from two virocells independently infected by unrelated dsDNA viruses, PSA-HS2 (HS2-virocells) and PSA-HP1 (HP1-virocells), to examine how phosphate limitation affects virocell resource manipulation intra- and extracellularly. Intracellularly, we find that (i) HP1-virocells boost amino acid production toward the end of the infection cycle but deplete amino acid pools relative to HS2-virocells; (ii) both virocells dampen the production of nucleotide synthesis proteins; (iii) HS2-virocells switch from synthesis to recycling of phospholipids, whereas HP1-virocells decrease both activities; (iv) all cells (virocells and uninfected cells), but HP1-virocells especially, increase membrane fluidity; and (v) both virocells increase iron storage. Extracellularly, (i) polyphenols, a stress marker, increased in all cells, particularly in HP1-virocells, and (ii) only HP1-virocells showed elevated unsaturated hydrocarbons and oxygen-rich metabolites, which are likely byproducts of intracellular metabolic activity. These findings advance our understanding of how environmental conditions shape virocell activities in ecologically relevant nutrient-limited conditions and reveal distinct responses of virocells to infection by unrelated viruses.IMPORTANCEThis study addresses a knowledge gap in understanding how nutrient limitation shapes virus-infected bacterial cell (virocell) metabolism and its ecosystem footprints. Using multi-omics approaches, we examined how two different viruses (PSA-HP1 and PSA-HS2) independently infecting the same marine heterotrophic bacterium () respond to phosphorus limitation. Building upon our previous work, we show how virocell metabolic reprogramming manipulates cellular resources and alters the extracellular environment. Intracellularly, while both virocells reprogram similar metabolic pathways, they manipulate key resources (nucleotides, amino acids, lipids, and iron) distinctly under nutrient limitation. Extracellularly, each virocell generates unique dissolved organic matter metabolites, with a differential expression of stress markers under phosphorus limitation, indicating environment-specific ecosystem footprints. These results provide fundamental insights into how virocell metabolic reprogramming and resource manipulation combine to produce ecosystem-scale metabolic outputs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282109 | PMC |
http://dx.doi.org/10.1128/msystems.00521-25 | DOI Listing |
JDS Commun
September 2025
Department of Animal and Veterinary Sciences, the University of Vermont, Burlington, VT 05405.
Optimizing calf feeding strategies is critical for improving performance, health, and weaning transitions of preweaning animals. Despite the updated National Academies of Sciences, Engineering, and Medicine (NASEM, 2021) , decision support tools integrating these equations for simulating optimized calf feeding strategies remain limited. To address this gap, we developed and tested the CalfSim, a free, user-friendly decision support tool designed to simulate and optimize feeding plans for dairy calves.
View Article and Find Full Text PDFCurr Obes Rep
September 2025
Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ, USA.
Purpose Of The Review: This review aimed to summarize current evidence on the effectiveness of medical nutrition therapy (MNT) in the management of obesity and endometriosis, with a focus on dietary patterns such as the Mediterranean and Ketogenic diets, as well as nutritional supplementation. Additionally, it highlights the central role of the clinical nutritionist in implementing individualized, evidence-based interventions within multidisciplinary care.
Recent Findings: Although the literature reports the existence of an inverse relationship between risk of endometriosis and body mass index, clinical evidence jointly reports that a condition of obesity is associated with greater disease severity.
Environ Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFmSystems
September 2025
Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, USA.
is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
College of Life Sciences, Northwest Normal University, Lanzhou, China.
Nitrogen leaching is a major pathway of nitrogen fertilizer loss. Although arbuscular mycorrhizal (AM) fungi are known to reduce nitrogen leaching by improving plant nitrogen uptake, the soil-based mechanisms remain unclear. A pot experiment was conducted using a randomized complete block design, with four nitrogen levels (0, 3.
View Article and Find Full Text PDF