98%
921
2 minutes
20
Unlabelled: Enteroviruses frequently recombine with one another in nature; however, it is unclear how viral replication machinery can distinguish between related and unrelated partners during recombination. We hypothesize that viral RNA recombination involves two parental RNA templates, nascent RNA products, and their dynamic interactions with the viral polymerase-a sexual replication strategy. When nascent RNA products move from one parental RNA template to another, RNA sequence similarity may be an important factor underpinning the mechanism and efficiency of recombination. To test this hypothesis, we focused on recombination between two related group C enteroviruses, poliovirus and Coxsackievirus A21 (CVA21), using bioinformatic, biological, and biochemical approaches. Bioinformatic analyses comparing 22 prototypical group C enteroviruses delineated four recombination groups where viruses in each group exhibit high RNA sequence and amino acid similarity in their polymerase genes. ClickSeq and ViReMa methods detect recombinant forms of poliovirus with P3 genes from CVA21, analogous to recombinant circulating vaccine-derived polioviruses (cVDPV). Biochemical assays show that poliovirus and CVA21 polymerases can detect mismatched base pairs as they traverse an extended primer grip surface adjacent to the active site. Mismatched base pairs in the -2 and -3 positions destabilize polymerase elongation complexes, consistent with the predicted role of RNA sequence similarity in recombination. Two subgroup-specific genetic elements, upstream open-reading frames (uORFs) and RNase L competitive inhibitor RNAs (RNase L ciRNAs), reinforce the existence and biological relevance of enterovirus C recombination groups. Altogether, our observations suggest that enterovirus RNA replication machinery can distinguish between related and unrelated partners during recombination.
Importance: Viral RNA recombination transforms live-attenuated polioviruses into neurovirulent circulating vaccine-derived polioviruses, complicating the planned eradication of poliovirus. When humans are co-infected with poliovirus and related non-polio enteroviruses, viral replication machinery can produce recombinant viruses. However, who recombines with whom? What factors determine whether two distinct viruses can produce recombinant progeny that are fit for transmission from person to person? In this study, we clarify which viruses recombine with one another in nature and further elucidate the mechanisms by which the viral polymerase distinguishes between related and unrelated RNA templates-a sexual form of replication. Understanding these mechanisms could lead to better strategies for virus control and/or eradication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12282145 | PMC |
http://dx.doi.org/10.1128/jvi.00434-25 | DOI Listing |
Front Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDFBrain Commun
August 2025
Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Public Health, Veterinary Medicine College, University of Wasit, Wasit 52001, Iraq.
Background And Aim: is a significant zoonotic pathogen linked to reproductive losses in livestock and serious health risks in humans. In Iraq, listeriosis remains underreported in sheep, with limited data on its molecular and epidemiological characteristics. This study aimed to (1) estimate the seroprevalence of in recently aborted ewes, (2) evaluate the association between seropositivity and clinical indicators, and (3) perform molecular detection and phylogenetic analysis of polymerase chain reaction (PCR)-confirmed isolates.
View Article and Find Full Text PDFVet World
July 2025
Microbiology Laboratory, Veterinary Hospital of the Federal University of Mato Gross - UFMT, Cuiabá, Mato Grosso, Brazil.
Background And Aim: The global rise of multidrug-resistant (MDR) poses a serious threat to human and animal health. Close proximity between humans and domestic animals may facilitate zoonotic transmission of MDR strains, underscoring the need for integrated surveillance strategies. This study aimed to investigate the genetic diversity, resistance mechanisms, and virulence gene profiles of isolates from domestic animals and humans in Mato Grosso, Brazil, within the One Health framework.
View Article and Find Full Text PDFMycobiology
September 2025
Department of Plant Medicine, Kyungpook National University, Daegu, Korea.
In a survey of freshwater and near-freshwater soils in Chungbuk, Gyeonggi, Gangwon, Gyeongbuk, and Gyeongnam provinces in Korea, seven fungal strains were isolated and identified as members of the genus based on the internal transcribed spacer (ITS) regions sequence analyses. Identification was performed through observing morphological characteristics and conducting phylogenetic analyses based on concatenated partial ITS, β-tubulin, calmodulin, and RNA polymerase II subunit gene sequences. The phylogenetic analyses revealed that strain NNIBRFG6577 was distinct from known species, and based on morphological comparisons with the closest related species, CGMCC 3.
View Article and Find Full Text PDF