Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Membrane-bound extracellular vesicles (EVs) are more than mere messengers; they are the carriers of intercellular communication, carrying biomolecules for regulatory processes. They have potential in biomarker discovery and disease diagnosis for clinical applications. However, the exploration and utilization of EVs are currently constrained by the existing processing methodologies. Microfluidic technology is a versatile platform, achieving the efficient, consistent, and precise separation and aggregation of particles from the nanoscale to the microscale. It has great potential for EVs, enabling precise manipulation, separation, and aggregation in microchannels. This review explores active and passive microfluidic techniques, presenting a cost-effective and scalable solution for label-free separation. Their development is important for EV research, unlocking value in the in-depth study. Their innovative biomedical applications can revolutionize laboratory medicine, drug delivery, and regenerative medicine by fully realizing and harnessing the potential of EVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-025-00752-3 | DOI Listing |