Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Fashion attribute editing is essential for combining the expertise of fashion designers with the potential of generative artificial intelligence. In this work, we focus on 'any' fashion attribute editing: 1) the ability to edit 78 fine-grained design attributes commonly observed in daily life; 2) the capability to modify desired attributes while keeping the rest components still; and 3) the flexibility to continuously edit on the edited image. To this end, we present the Any Fashion Attribute Editing (AFED) dataset, which includes 830K high-quality fashion images from sketch and product domains, filling the gap for a large-scale, openly accessible fine-grained dataset. We also propose Twin-Net, a twin encoder-decoder GAN inversion method that offers diverse and precise information for high-fidelity image reconstruction. This inversion model, trained on the new dataset, serves as a robust foundation for attribute editing. Additionally, we introduce PairsPCA to identify semantic directions in latent space, enabling accurate editing without manual supervision. Comprehensive experiments, including comparisons with ten state-of-the-art image inversion methods and four editing algorithms, demonstrate the effectiveness of our Twin-Net and editing algorithm. All data and models are available at https://github.com/ArtmeScienceLab/AnyFashionAttributeEditing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2025.3581793 | DOI Listing |