Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present review explores the influence of the gut microbiota on antibiotic resistance dynamics, particularly those associated with dysbiosis. The improper use of antibiotics can induce resistance in pathogens through various pathways, which is a topic of increasing interest within the scientific community. This review highlights the importance of microbial diversity, gut metabolism, and inflammatory responses against the dysbiosis due to the action of antibiotics. Additionally, it examines how secondary metabolites secreted by pathogens can serve as biomarkers for the early detection of antibiotic resistance. Although significant progress has been made in this field, key research gaps persist, including the need for a deeper understanding of the long-term effects of antibiotic-induced dysbiosis and the specific mechanisms driving the evolution of resistance in gut bacteria. Based on these considerations, this review systematically analyzed studies from PubMed, Web of Science, Embase, Cochrane Library, and Scopus up to July 2024. This study aimed to explore the dynamics of the interactions between gut microbiota and antibiotic resistance, specifically examining how microbial composition influences the development of resistance mechanisms. By elucidating these relationships, this review provides insights into management strategies for drug resistance and improves our understanding of microbial contributions to host health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173824PMC
http://dx.doi.org/10.1016/j.engmic.2024.100187DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
16
gut microbiota
12
resistance
8
microbiota antibiotic
8
gut
5
complexity antibiotic
4
resistance impact
4
impact gut
4
microbiota dynamics
4
review
4

Similar Publications

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

remains a leading respiratory pathogen for children and the elderly. In Taiwan, a national PCV13 catch-up vaccination programme for children began in March 2013. This study investigates the population structure and antimicrobial profiles of pneumococcal isolates in Taiwan from 2006 to 2022.

View Article and Find Full Text PDF

Background: A significant surge in pertussis cases since early 2023 has raised serious public health concerns. To investigate the potential mechanisms contributing to this increased prevalence, we collected throat swab specimens from children exhibiting pertussis symptoms and conducted detailed molecular characterization.

Methods: All Bordetella pertussis (B.

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF

causes otitis media and severe diseases including pneumonia, meningitis and bacteraemia. The rise of antimicrobial resistance (AMR) in , facilitated by mobile genetic elements (MGEs), complicates infection treatment. While pneumococcal conjugate vaccine (PCV) deployment has reduced disease burden, non-vaccine serotypes (NVTs) have increased and now cause invasive disease.

View Article and Find Full Text PDF