Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) represent predominant histological subtypes of cervical cancer. To improve screening efficacy, we leveraged RNA sequencing data from 4 cervical SCC samples, 4 cervical ADC samples, and 8 normal cervix samples and conducted a comprehensive mRNA and long noncoding RNA (lncRNA) profiling analysis followed with a multi-phase study comprising 556 samples. Validating the RNA sequencing data in a clinical sample set comprising 45 normal cervix tissues, 45 SCC tissues, and 45 ADC tissues, we identified 9 mRNAs (SMC1B, OTX1, GRP, CELSR3, HOXC6, ITGB6, WDR62, SEPT3, and KLHL34) and 4 lncRNAs (FEZF1-AS1, LINC01305, LINC00857, and LINC00673) differentially expressed in both SCC and ADC samples. Utilizing quantitative reverse transcription polymerase chain reaction analysis and receiver operating characteristic (ROC) curve analysis in a training set (45 normal, 126 SCC, and 82 ADC tissues), we refined a novel mRNA-lncRNA-based panel (SMC1B/CELSR3/FEZF1-AS1/LINC01305). Employing logistic regression model and ROC analysis, this panel exhibited significant distinctions and promising area under the curve (AUC) values in both SCC (AUC=0.9520, p<0.0001) and ADC (AUC=0.9748, p<0.0001) tissues. Subsequent validation in an independent set (11 normal, 32 SCC, and 20 ADC tissues) demonstrated its diagnostic accuracy in both SCC (AUC=0.9659, p<0.0001) and ADC (AUC=0.9636, p<0.0001) patients. Notably, this tissue-based biomarker panel robustly discriminated precancerous lesion and cervical cancer patients from non-disease controls in a blood-based validation set (30 normal, 25 HSIL and 50 cervical cancer) with an AUC value of 0.9320. This study presents a non-invasive, efficient diagnostic panel for cervical cancer screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3802/jgo.2025.36.e81 | DOI Listing |