Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Melanoma remains the most aggressive form of skin cancer, characterized by high metastatic potential, genetic heterogeneity, and resistance to conventional therapies. The Melanoma MEGA-Study is a multi-center initiative designed to address these clinical challenges by integrating advanced proteogenomic profiling, clinical metadata, with AI-driven digital pathology and machine learning analytics, aiming to enhance personalized treatment strategies and improve patient outcomes. Between 2013 and 2022, a cohort of 1653 melanoma patients each contributed a primary tumor sample, with 361 providing 819 metastatic tumor samples. Clinical data collection for this cohort continued until May 2023. Comprehensive analyses using high-resolution mass spectrometry, optimized workflows for formalin-fixed paraffin-embedded tissues, and advanced digital pathology platforms enabled precise mapping of the tumor microenvironment, identification of metabolic reprogramming, and characterization of immune evasion signatures. The European Cancer Moonshot Lund Center's MEGA-Study, under the academic umbrella of Lund and Szeged universities, marks a significant advancement in its collaborative efforts with the National Institutes of Health (NIH) under the Cancer Moonshot partnership. This initiative exemplifies the center's dedication to pioneering cancer research and underscores the strength of its international collaborations. SIGNIFICANCE: The significance of this study lies in its pioneering integration of high-resolution proteomics, AI-driven digital pathology, and comprehensive clinical annotation to unravel the complex molecular landscape of melanoma. By leveraging a robust, population-based cohort of 1653 patients, including extensive analyses of both primary and metastatic tumor specimens, our approach provides unprecedented insights into the proteogenomic alterations that underpin tumor progression, immune evasion, and therapeutic resistance. The preliminary application of advanced mass spectrometry techniques to formalin-fixed paraffin-embedded tissues, combined with state-of-the-art digital pathology and machine learning, has enabled the identification of novel protein biomarkers and metabolic signatures that hold promise for refining patient stratification and informing personalized treatment strategies. This integrative framework not only deepens our understanding of melanoma biology but also establishes a scalable model for precision oncology that can be extended to other complex malignancies. Ultimately, our findings have the potential to transform clinical practice by facilitating earlier risk stratification, improving prognostication, and guiding the development of targeted therapeutic interventions for this highly aggressive cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2025.105482DOI Listing

Publication Analysis

Top Keywords

digital pathology
20
melanoma mega-study
8
precision oncology
8
ai-driven digital
8
pathology machine
8
machine learning
8
personalized treatment
8
treatment strategies
8
cohort 1653
8
metastatic tumor
8

Similar Publications

Purpose: The German sector-based healthcare system poses a major challenge to continuous patient monitoring and long-term follow-up, both essential for generating high-quality, longitudinal real-world data. The national Network for Genomic Medicine (nNGM) bridges the inpatient and outpatient care sectors to provide comprehensive molecular diagnostics and personalized treatment for non-small cell lung cancer (NSCLC) patients in Germany. Building on the established nNGM infrastructure, the DigiNet study aims to evaluate the impact of digitally integrated, personalized care on overall survival (OS) and the optimization of treatment pathways, compared to routine care.

View Article and Find Full Text PDF

Background: The integration of digital health care technologies into speech-language pathology and audiology is rapidly transforming service delivery. In South Africa and other low- and middle-income countries (LMICs), digital tools offer significant opportunities to address access challenges and enhance patient outcomes. However, the adoption of these technologies requires careful consideration of contextual factors.

View Article and Find Full Text PDF

Background The optimal surgical management of human epidermal growth factor receptor 2 (HER2)-positive breast cancer with calcifications remains controversial, particularly when pathologic complete response (pCR) is suspected. Purpose To identify factors associated with pCR after neoadjuvant chemotherapy in patients with HER2-positive breast cancer and assess whether calcifications affect the performance of radiologic complete response (rCR) at MRI for predicting pCR. Materials and Methods This retrospective study included patients with HER2-positive breast cancer who received neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab and underwent surgery between January 2021 and October 2023.

View Article and Find Full Text PDF

Background: With the increasing incidence of skin cancer, the workload for pathologists has surged. The diagnosis of skin samples, especially for complex lesions such as malignant melanomas and melanocytic lesions, has shown higher diagnostic variability compared to other organ samples. Consequently, artificial intelligence (AI)-based diagnostic assistance programs are increasingly needed to support dermatopathologists in achieving more consistent diagnoses.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF