A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting transient performance of a heavy-duty gaseous-fuelled engine using combined phenomenological and machine learning models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decarbonizing long-haul goods transportation poses a substantial challenge. High-efficiency natural gas (NG) engines, which retain the efficiency of a diesel engine but reduce the carbon content of the fuel, offer substantial potential for near-term greenhouse gas (GHG) reductions. A fast-running model that can predict engine performance, GHG and air pollutant emissions is critical to assessing this approach for different applications and vehicle drivetrain configurations. This paper presents the development, validation and application of an engine system model that adapts GT-SUITE™'s phenomenological DI-Pulse predictive model to predict the performance and emissions of a 6-cylinder NG engine using a high pressure direct-injection combustion process. The model includes the engine air exchange system, enabling the prediction of the engine and in-cylinder conditions and overall performance over transient drive cycles. The engine model with a fixed set of calibration parameters captures the complex high-pressure direct injection combustion process and generates time-resolved parameters that are fed into a coupled machine learning model to predict emissions, including nitrogen oxide (NOx) and methane (CH) emissions. While the 1-D model's predictions for CH were not accurate, coupling the 1-D engine model with a machine learning model has been shown to substantially improve the estimation of CH emissions and allow accurate prediction of engine total GHG emissions over different duty cycles. The model has been validated using transient engine dynamometer data and is then applied to assess performance and emissions over several regulatory and real-world long-haul drive cycles. The model showed an average error of less than 5% in steady operation. Cumulative errors of NOx and CH emissions in studied cycles were also less than 10%. The results showed that CH share in total GHG emissions ranges from 0.2% to 1.4% over various drive cycles. By predicting engine performance and emissions, the developed combined model has considerable potential for use in engine evaluation studies, especially when combined with new technologies across different duty cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169630PMC
http://dx.doi.org/10.1177/14680874241305732DOI Listing

Publication Analysis

Top Keywords

engine
13
machine learning
12
model predict
12
performance emissions
12
drive cycles
12
model
11
emissions
10
engine performance
8
combustion process
8
prediction engine
8

Similar Publications