Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Colorectal cancer (CRC) is one of the most common malignancies globally and a major cause of cancer-related deaths. In the molecular diagnosis of CRC, microsatellite instability (MSI) status and mutations in genes such as , , and are important molecular markers. Traditional molecular detection methods are costly and time-consuming. Therefore, this study proposes a fine-grained classification method for CRC based on hematoxylin and eosin (H&E) stained tissue section images combined with deep learning (DL) technology, aiming to provide new insights into the molecular diagnosis of CRC.

Methods: In this study, we first collected H&E-stained tissue section images of 383 CRC patients from The First Hospital of Lanzhou University (LZUFH) and constructed the LZUFH_CRC dataset. Then, we proposed a hybrid DL model combining Convolutional Neural Network (CNN) and Vision Transformer (ViT) for fine-grained classification tasks in CRC. The model consists of three parts: a feature extractor, an aggregator, and a classification head. A two-stage training strategy was adopted for model training. Finally, we evaluated the performance of the model on the LZUFH_CRC dataset and compared it with other methods.

Results: The results showed that the proposed model achieved an overall accuracy (ACC) of 0.524 and area under the receiver operating characteristic curve (AUC) of 0.791 on the LZUFH_CRC dataset. Among them, the grouping names MSI and NRAS had better classification performance, with F1-scores of 0.724 and 0.514, respectively. Additionally, the study visualized the feature activation maps to show the regions of interest of the model for different input images, finding that the model paid more attention to the transitional areas between tumor and non-tumor regions and the mesenchymal areas of the tumor. Meanwhile, comparisons among different clinical characteristic groups showed that the model did not exhibit significant biases in terms of gender, age and tumor location.

Conclusions: This study proposed a fine-grained classification method for CRC based on DL technology, which combines H&E-stained tissue section images with DL technologies such as CNN and ViT, providing new insights into the molecular diagnosis of CRC. Although the performance of the model needs further improvement, the results indicate that DL technology has potential in the molecular detection of CRC. In the future, the research team will continue to optimize the model to improve the ACC and efficiency of fine-grained classification in CRC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12169992PMC
http://dx.doi.org/10.21037/tcr-2024-2348DOI Listing

Publication Analysis

Top Keywords

fine-grained classification
16
molecular diagnosis
12
tissue images
12
lzufh_crc dataset
12
model
10
crc
9
deep learning
8
colorectal cancer
8
diagnosis crc
8
molecular detection
8

Similar Publications

Significant progress has been made in applying deep learning for the automatic diagnosis of skin lesions. However, most models remain unexplainable, which severely hinders their application in clinical settings. Concept-based ante-hoc interpretable models have the potential to clarify the decision-making process of diagnosis by learning high-level, human-understandable concepts, while they can only provide numerical values of conceptual contributions.

View Article and Find Full Text PDF

Purpose: Recent developments in computational pathology have been driven by advances in vision foundation models (VFMs), particularly the Segment Anything Model (SAM). This model facilitates nuclei segmentation through two primary methods: prompt-based zero-shot segmentation and the use of cell-specific SAM models for direct segmentation. These approaches enable effective segmentation across a range of nuclei and cells.

View Article and Find Full Text PDF

Precision livestock farming increasingly relies on non-invasive, high-fidelity systems capable of monitoring cattle with minimal disruption to behavior or welfare. Conventional identification methods, such as ear tags and wearable sensors, often compromise animal comfort and produce inconsistent data under real-world farm conditions. This study introduces Dairy DigiD, a deep learning-based biometric classification framework that categorizes dairy cattle into four physiologically defineda groups-young, mature milking, pregnant, and dry cows-using high-resolution facial images.

View Article and Find Full Text PDF

Introduction: CT-based classification of distal ulnar-radius fractures requires precise detection of subtle features for surgical planning, yet existing methods struggle to balance accuracy with clinical efficiency. This study aims to develop a lightweight architecture that achieves accurate AO (Arbeitsgemeinschaft für Osteosynthesefragen) typing[an internationally recognized fracture classification system based on fracture location, degree of joint surface involvement, and comminution, divided into three major categories: A (extra-articular), B (partially intra-articular), and C (completely intra-articular)] while maintaining real-time performance. In this task, the major challenges are capturing complex fracture morphologies without compromising detection speed and ensuring precise identification of small articular fragments critical for surgical decision-making.

View Article and Find Full Text PDF

Sleep monitoring is essential for assessing sleep quality and understanding its broader implications for overall health. Although electroencephalography (EEG) remains the gold standard for sleep analysis, multichannel techniques are often cumbersome and impractical for real-world application. As a more feasible alternative, single-channel EEG offers greater practicality but still faces several persistent challenges, including reduced spatial resolution, feature instability, and limited clinical interpretability.

View Article and Find Full Text PDF