Advanced Therapeutic Approaches Based on Small Extracellular Vehicles (sEVs) For the Regeneration of Spinal Cord Injuries.

Int J Nanomedicine

Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal cord injury (SCI) is severe damage to part of the central nervous system (CNS) that can result in impaired sensory and motor function, significantly impacting the quality of life for patients and creating a substantial economic burden on society. The process of SCI involves both primary and secondary injury, with the latter being a series of heightened responses triggered by the initial damage. The complex nature of SCI's pathological mechanisms has made it challenging to develop effective treatment strategies in clinical settings. Small extracellular vesicles (sEVs) are membrane-bound vesicles with a size range of ≤200 nm, released from cells into extracellular spaces. These vesicles are heterogeneous and can originate from various intracellular compartments, including endosomal and non-endosomal sources. A growing body of evidence points to the potential of sEVs in repairing SCI. This review explores the preparation, functions, routes of administration, advantages, challenges, and advanced therapies for sEVs. It also examines the mechanisms through which various types of sEVs can promote healing in SCI and assesses the effectiveness of combining sEVs with other treatment approaches. Furthermore, the review discusses the opportunities and obstacles associated with using sEVs to repair SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170841PMC
http://dx.doi.org/10.2147/IJN.S522028DOI Listing

Publication Analysis

Top Keywords

small extracellular
8
spinal cord
8
sevs
7
sci
5
advanced therapeutic
4
therapeutic approaches
4
approaches based
4
based small
4
extracellular vehicles
4
vehicles sevs
4

Similar Publications

FocA belongs to the formate-nitrite transporter (FNT) superfamily of pentameric membrane proteins, which translocate small, monovalent anions across the cytoplasmic membrane of bacteria, archaea and certain protists. FocA translocates formate anions or formic acid bidirectionally through a hydrophobic pore present in each protomer. This pore has two highly conserved amino acid residues, threonine 91 and histidine 209 that are proposed to protonate the anion during the translocation process.

View Article and Find Full Text PDF

Objective: Vertical sleeve gastrectomy (VSG) promotes significant metabolic improvements, though the underlying molecular mechanisms are not fully understood. Emerging evidence suggests that small extracellular vesicles (sEVs) contribute to metabolic improvements post VSG, such as improved fatty liver disease or adipose tissue function; however, it is unclear how different organ-specific sEVs interact with various metabolic parameters. The objective of this study is to establish the role of organ-specific sEVs in the metabolic improvements post VSG.

View Article and Find Full Text PDF

Dynamic control of ciliary membrane protein content is crucial for the organelle's homeostasis and signaling function and involves removal of ciliary components by intraflagellar transport (IFT) and BBSome-mediated export, endocytic retrieval, and/or extracellular vesicle (EV) shedding. We report that the kinesin-3 motor KIF13B regulates ciliary protein composition and EV shedding in cultured kidney epithelial cells, with effects that vary over time. In early stages of ciliation, Kif13b cells aberrantly accumulate polycystin-2 (PC2) within cilia and release large EVs enriched with CCDC198 and the centriole distal appendage protein CCDC92, which also localizes to the ciliary tip.

View Article and Find Full Text PDF

Although the surface micro-ornamentation of the scales within the skin of snakes has been the subject of many previous studies, there has been little work done on the spectacle, a protective (keratinised) goggle separated from the underlying cornea by a sub-spectacular space. The surface ultrastructure of the "Oberhäutchen" of the spectacle is examined in nine species of snakes (five aquatic and four terrestrial) using light and electron microscopy, micro-computed tomography and gel-based profilometry. Significant topographic differences in cell size (increases of between 5.

View Article and Find Full Text PDF

Aims: Psychological resilience refers to an individual's capacity to adapt to adverse events. MicroRNAs (miRNAs) play a crucial role in regulating post-transcriptional processes, while small extracellular vesicles (sEVs) act as transport vehicles. This study aimed to employ genome-wide profiling to identify and validate differences in the expression of resilience-associated sEV-miRNAs between low resilience (LR) and high resilience (HR) in young adults.

View Article and Find Full Text PDF