A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Biomineralized PEEK cages containing osteoinductive CaP bioceramics promote spinal fusion in goats. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Interbody fusion devices are critical in spinal surgery to restore spinal stability, reduce pain and improve function. Polyetheretherketone (PEEK) has become a commonly used alternative material for fusion cages owing to its excellent mechanical properties and biocompatibility, but its biological inertness limits bone regeneration and may lead to poor fusion. In this study, a novel strategy for preparing bioactive biomineralized PEEK cages was developed using a unique combination of osteoinductive CaP bioceramic fillings in the cage window, acid sulfonation and simulated body fluid incubation. experiments showed that biomineralized PEEK cages and CaP bioceramics regulate immunity and promote angiogenesis and bone integration via activation of hypoxia-inducible factor 1-alpha and cyclic guanosine monophosphate/protein kinase G signaling pathways. goat spinal fusion experiments demonstrated that PEEK cages filled with CaP bioceramics resulted in good bone growth and spinal fusion. Therefore, the high mechanical strength and good biocompatibility of biomineralized PEEK cages, together with the excellent bioactivity and degradation properties of CaP bioceramics, provide an ideal microenvironment for bone fusion. The development of this composite material not only addresses some of the limitations of existing fusion devices but also will facilitate the development of spinal fusion technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173203PMC
http://dx.doi.org/10.1016/j.bioactmat.2024.11.014DOI Listing

Publication Analysis

Top Keywords

peek cages
20
biomineralized peek
16
cap bioceramics
16
spinal fusion
16
fusion
9
osteoinductive cap
8
fusion devices
8
cages excellent
8
cages
6
spinal
6

Similar Publications