Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Diabetes mellitus (DM) refers to a series of metabolic disorders, including elevated blood glucose level diseases due to insufficient insulin secretion or insulin resistance.

Objective: To investigate the effect and protective mechanism of muscle-derived stem cell exosomes (MDSC-Exo) on glucolipotoxicity-induced pancreatic β cell injury.

Methods: Primary rat muscle-derived stem cells (MDSCs) were isolated and cultured. After the completion of the third-generation culture for MDSCs, MDSC-Exo was isolated. Then, the morphology and diameter of exosomes were observed by means of electron microscopy and nanoparticle tracking analysis (NTA) instrument. The expression of exosome-related proteins CD63, TSG101 and Calnexin was detected by western blot. After stimulation of rat insulinoma cell line INS- 1 with high glucose/palmitic acid (HG/PA) and/or MDSC-Exo, cell viability and apoptosis were measured through MTT and flow cytometry (FCT), respectively. Biochemical reagents were utilized for the examination of the levels of superoxide dismutase (SOD) and malondialdehyde (MDA); enzyme-linked immunosorbent assay (ELISA) for the levels of cellular insulin secretion, and the western blot for the expression level of LC3, p62, AKT, p-AKT, mTOR and p-mTOR.

Results: MDSC-Exo was successfully isolated and identified, and it was found that MDSC-Exo could reduce HG/PA-induced apoptosis as well as MDA levels in INS-1 cells. Also, MDSC-Exo could significantly increase cell viability, insulin secretion ability within 24 hours and SOD level. Besides, MDSC-Exo was able to significantly increase the LC3-II/I ratio, decrease the expression level of p62, and promote autophagy in the cells. Aside from what has been mentioned, MDSC- Exo showed a significant reduction effect on p-Akt and p-mTOR level as well as p-Akt/Akt and p-mTOR/mTOR ratios.

Conclusion: MDSC-Exo can alleviate oxidative stress and enhance autophagy by inhibiting Akt/ mTOR signaling pathway activation. Then, the inhibition of apoptosis and the promotion of insulin secretion can be achieved to alleviate glucolipotoxicity-induced pancreatic β cell injury.

Download full-text PDF

Source
http://dx.doi.org/10.2174/011574888X288930240523045700DOI Listing

Publication Analysis

Top Keywords

insulin secretion
16
muscle-derived stem
12
glucolipotoxicity-induced pancreatic
12
stem cell
8
cell exosomes
8
enhance autophagy
8
mtor signaling
8
signaling pathway
8
mdsc-exo
8
pancreatic cell
8

Similar Publications

Aims/hypothesis: Unimolecular peptides targeting the receptors for glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) have been shown to improve glycaemic management in both mice and humans. Yet the identity of the downstream signalling events mediated by these peptides remain to be elucidated. Here, we aimed to assess the mechanisms by which a validated peptide triagonist for GLP-1/GIP/GCG receptors (IUB447) stimulates insulin secretion in murine pancreatic islets.

View Article and Find Full Text PDF

Aims/hypothesis: Alpha cell dysregulation is an integral part of type 2 diabetes pathophysiology, increasing fasting as well as postprandial glucose concentrations. Alpha cell dysregulation occurs in tandem with the development of insulin resistance and changes in beta cell function. Our aim was to investigate, using mathematical modelling, the role of alpha cell dysregulation in beta cell compensatory insulin secretion and subsequent failure in the progression from normoglycaemia to type 2 diabetes defined by ADA criteria.

View Article and Find Full Text PDF

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by persistent hyperglycemia and associated with severe complications, including cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Although synthetic antidiabetic drugs are available, the side effects and limited long-term effectiveness of these medications highlight the urgent need for safer, more potent alternative therapies. L.

View Article and Find Full Text PDF

Pancreatic Islet Cell Hormones: Secretion, Function, and Diabetes Therapy.

MedComm (2020)

September 2025

Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, Division of Pancreatic Surgery, Department of General Surgery, Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital Sichuan University Chen

The pancreatic islets of Langerhans, which are composed of α, β, δ, ε, and PP cells, orchestrate systemic glucose homeostasis through tightly regulated hormone secretion. Although the precise mechanisms involving β cells in the onset and progression of diabetes have been elucidated and insulin replacement therapy remains the primary treatment modality, the regulatory processes, functions, and specific roles of other pancreatic islet hormones in diabetes continue to be the subject of ongoing investigation. At present, a comprehensive review of the secretion and regulation of pancreatic islet cell hormones as well as the related mechanisms of diabetes is lacking.

View Article and Find Full Text PDF