Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Global climate change exacerbates drought stress, severely affecting plant growth, agricultural productivity, and the biosynthesis of secondary metabolites. Alkaloids, nitrogenous compounds with diverse biological activities, hold substantial medicinal value across various plant species. This review investigates the regulatory mechanisms through which drought stress influences alkaloid synthesis, focusing on key pathways such as abscisic acid (ABA) signaling and reactive oxygen species (ROS) responses that modulate gene expression and metabolic processes. Furthermore, we explore advanced biotechnological strategies-including genetic engineering, synthetic biology, and artificial intelligence (AI)-designed to optimizing alkaloid production under drought stress conditions. In agriculture, these strategies support the development of drought-resistant crops with enhanced alkaloid profiles, while in the pharmaceutical industry, sustainable production methods for valuable alkaloids are highlighted. The review also addresses critical challenges, such as balancing plant growth with metabolite production and ensuring field-level applicability of laboratory-developed strategies. By emphasizing interdisciplinary collaboration, this research provides comprehensive insights and practical guidance for enhancing crop resilience and maximizing alkaloid yields, thereby advancing sustainability in the medicinal plant industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2025.154545 | DOI Listing |