Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabotropic glutamate receptor 5 (mGlu5) is implicated in various neurodegenerative disorders, making it an attractive drug target. Although several ligand-bound crystal structures of mGlu5 exist, their apo-state crystal structure remains unknown. Here, we study mGlu5 structural changes using the photochemical affinity switch, alloswitch-1, in combination with time-resolved freeze-trapping methods. By X-ray crystallography, we demonstrated that isomerizing alloswitch-1 leads to its release from the binding pocket within a few seconds. The apo structure, determined at a resolution of 2.9 Å, is more comparable to the inactive state than to the active state. Our approach presents an accessible alternative to time-resolved serial crystallography for capturing thermodynamically stable transient intermediates. The mGlu5 apo-structure provides molecular insights into the ligand-free allosteric pocket, which can guide the design of new allosteric modulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12168131PMC
http://dx.doi.org/10.1002/pro.70104DOI Listing

Publication Analysis

Top Keywords

metabotropic glutamate
8
glutamate receptor
8
apo-state structure
4
structure metabotropic
4
receptor transmembrane
4
transmembrane domain
4
domain photoswitchable
4
photoswitchable ligand
4
ligand metabotropic
4
mglu5
4

Similar Publications

mGlu2 Receptors in the Basal Ganglia: A New Frontier in Addiction Therapy.

Front Biosci (Landmark Ed)

August 2025

Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.

Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.

View Article and Find Full Text PDF

Aging-related adaptations of metabotropic glutamate receptors within the CA3 region of the rat hippocampus.

Neurobiol Aging

September 2025

Departamento de Farmacobiología. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico. Electronic address:

The physiological decline associated with aging is often accompanied by a progressive deterioration in cognitive processing abilities driven by a series of cellular dysfunctions that remain poorly understood. In the hippocampus, a critical area for learning and memory, aging affects the functional expression of ionotropic and metabotropic receptors, including the metabotropic glutamate receptors (mGluRs). mGluRs play a critical role in multiple cellular functions, including modulation of ion channels and intrinsic excitability, synaptic transmission, and induction of synaptic plasticity, processes considered part of the cellular substrates for learning and memory.

View Article and Find Full Text PDF

Metabotropic glutamate receptor 1-mediated Ca response is potentiated by activation of metabotropic glutamate receptor 3 in the rat hippocampal marginal zone.

Brain Res Bull

September 2025

Department of Physiology Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi Hirakata, Osaka 573-1010, Japan. Electronic address:

Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors (GPCRs) that mediate slow glutamatergic signal transduction and regulate cell excitability in the central nervous system. Group I mGluRs are coupled to G proteins and mobilize intracellular Ca. Group II mGluRs are coupled to G proteins and inhibit adenylyl cyclase.

View Article and Find Full Text PDF

Gα signaling in primary sensory neurons shifts opioid analgesia to NMDA receptor-driven tolerance and hyperalgesia.

Sci Signal

September 2025

Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Opioids relieve pain by activating μ-opioid receptors (MORs), which inhibit communication between pain-sensing neurons (nociceptors) and the spinal cord. However, prolonged opioid use can paradoxically lead to increased pain sensitivity (hyperalgesia) and reduced analgesic efficacy (tolerance), partly because of the activation of NMDA-type glutamate receptors (NMDARs) at the central terminals of primary sensory neurons in the spinal cord. Here, we identified a critical role for the G protein Gα in this paradox.

View Article and Find Full Text PDF

Autoimmune cerebellar ataxia (ACA) associated with anti-Homer-3 antibodies is a rare but increasingly recognized immune-mediated neurological condition. It represents a potentially treatable cause of sporadic cerebellar syndrome and may clinically mimic primarily multiple system atrophy of the cerebellar type (MSA-C), and less frequently, other atypical parkinsonian disorders. Because of the significant clinical overlap with neurodegenerative diseases, particularly MSA-C, Homer-3-associated ACA may be underdiagnosed or misdiagnosed, delaying effective treatment.

View Article and Find Full Text PDF