98%
921
2 minutes
20
Sorafenib is a multitargeted tyrosine kinase inhibitor approved by the FDA as a standard first-line therapy for advanced hepatocellular carcinoma. Nevertheless, the high incidence rate of gastrointestinal (GI) adverse effects substantially limits its clinical application. The molecular mechanisms underlying the GI damage remain poorly understood. In this study, we explored the critical role of gut microbiota in sorafenib-induced intestinal toxicity using a mouse model and proposed a potential therapeutic intervention strategy. Sorafenib administration caused intestinal pathological damage, systemic inflammation, and oxidative stress in mice. Antibiotic (ABX) treatment and fecal microbiota transplantation (FMT) experiments demonstrated that the GI toxicity induced by sorafenib was mediated by the gut microbiota. 16S rRNA sequencing analysis revealed that sorafenib dramatically disturbed gut microbial homeostasis, leading to an increased abundance of Gram-negative bacteria and upregulated biosynthesis of lipopolysaccharide (LPS). Intestinal transcriptomic sequencing further indicated that sorafenib induced Gram-negative bacterial-derived LPS leakage via the compromised intestinal barrier and exacerbated inflammation via TLR4/NF-κB pathway activation. Notably, the TLR4-specific inhibitor TAK-242 effectively attenuated sorafenib-induced intestinal damage. Taken together, our study unveils a novel mechanism by which sorafenib exacerbates intestinal injury through gut microbiota dysbiosis and LPS/TLR4/NF-κB signaling pathway, while proposing TAK-242 as a promising therapeutic strategy. This study underscores the critical role of the gut microbiota in sorafenib-induced intestinal damage and offers new avenues for clinical intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2025.154220 | DOI Listing |
Arq Gastroenterol
September 2025
The Japanese Society of Internal Medicine, Editorial Department, Tokyo, Japan.
Background: This study aims to analyze research trends and emerging insights into gut microbiota studies from 2015 to 2024 through bibliometric analysis techniques. By examining bibliographic data from the Web of Science (WoS) Core Collection, it seeks to identify key research topics, evolving themes, and significant shifts in gut microbiota research. The study employs co-occurrence analysis, principal component analysis (PCA), and burst detection analysis to uncover latent patterns and the development trajectory of this rapidly expanding field.
View Article and Find Full Text PDFJ Crohns Colitis
September 2025
Department of Gastroenterology, University Hospital of Marseille Nord, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix-Marseille University, Marseille, France.
Background And Aims: While this strategy is frequently used for other biologics, real-world evidence on subcutaneous (SC) vedolizumab (VDZ) dose intensification in inflammatory bowel disease (IBD) is lacking. This study aimed to assess the effectiveness and safety of SC VDZ intensification.
Methods: We conducted a retrospective study in 25 centers including all patients with active ulcerative colitis (UC) or Crohn's disease (CD) (defined by PRO2), and incomplete or loss of response to SC VDZ 108mg EOW when the drug was intensified.
Anesthesiology
September 2025
Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida.
Background: The brain-gut-microbiome (BGM) axis is a communication network through which the brain and gastrointestinal microbiota interact via neural, hormonal, immune, and gene expression mechanisms. Gut microbiota dysbiosis is thought to contribute to neurocognitive disorders, including perioperative neurocognitive disorder (PND), and to various metabolic abnormalities. Recently, we reported that sevoflurane induces neurocognitive deficits in exposed rats as well as their future offspring, with male offspring being particularly affected (intergenerational PND).
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), Guangdong, China.
Curr Atheroscler Rep
September 2025
Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.
Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.
Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.