Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This systematic review aimed to determine how cellulose nanofiber (CNF) enhance the mechanical properties, biocompatibility, and functional versatility of dental materials, based on in vitro evidence. A systematic review protocol was developed according to PRISMA 2020. The literature search was conducted using MEDLINE/PubMed, Scopus, Web of Science, Scopus, and Embase for English-language publications with no date restrictions, yielding 180 publications. After removing duplicates, 150 remained, from which 23 were evaluated in full. 17 in vitro studies met the inclusion criteria, of which 13 had a low risk of bias, 4 had a moderate risk, and none had a high risk. Across all included investigations, CNF consistently improved mechanical performance, particularly flexural and compressive strength, while maintaining or enhancing biocompatibility in various cell culture models. CNF's nanofibrillar structure and modifiable surface chemistry also expanded its functional versatility, enabling applications such as drug encapsulation and targeted antimicrobial delivery. Overall, CNF emerges as a promising biomaterial for modern dentistry, offering superior mechanical reinforcement, favorable cell responses, and wide-ranging functional modifications. Further in vivo research and clinical trials are necessary to confirm its long-term safety and efficacy, thereby facilitating the translation of these in vitro findings into standard dental practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162019 | PMC |
http://dx.doi.org/10.1016/j.jdsr.2025.05.002 | DOI Listing |