Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maternal metabolic dysfunction adversely influences embryonic muscle oxidative capacity and mitochondrial biogenesis, increasing the child's long-term risks of developing obesity and metabolic syndrome in later life. This pilot study explored the mechanistic basis of embryonic muscle metabolic programming, employing non-invasive magnetic field exposures. Brief (10 min) exposure to low-energy (1.5 milliTesla at 50 Hertz) pulsing electromagnetic fields (PEMFs) has been shown in mammals to promote oxidative muscle development, associated with enhanced muscular mitochondriogenesis, augmented lipid metabolism, and attenuated inflammatory status. In this study, quail eggs were used as a model system to investigate the potential of analogous PEMF therapy to modulate embryonic muscle oxidative capacity independently of maternal influence. Quail eggs were administered five 10-min PEMF exposures to either upward-directed or downward-directed magnetic fields over 13 days. Embryos receiving magnetic treatment exhibited increased embryo weight, size, and survival compared to non-exposed controls. Upward exposure was associated with larger embryos, redder breast musculature, and upregulated levels of and PGC-1α, transcriptional regulators promoting oxidative muscle development, mitochondriogenesis, and angiogenesis, whereas downward exposure augmented collagen levels and reduced angiogenesis. Exposure to upward PEMFs may hence serve as a method to promote embryonic growth and oxidative muscle development and improve embryonic mortality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155160PMC
http://dx.doi.org/10.3390/ijms26115423DOI Listing

Publication Analysis

Top Keywords

oxidative muscle
16
embryonic muscle
12
muscle development
12
magnetic field
8
muscle oxidative
8
oxidative capacity
8
quail eggs
8
muscle
7
oxidative
6
embryonic
6

Similar Publications

Purpose: CL316,243 (CL), a beta 3 adrenergic receptor (B3-AR) agonist has 'exercise mimetic' effects in adipose tissue (AT). CL may also positively affect skeletal muscle (SM), yet the role of estrogen receptor beta (ERβ) in mediating SM-specific effects of CL is not known. We investigated the effects of CL on SM metabolism, as well as the role played by ERβ.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Neutrophils in Myocarditis: A Focus on the Secretory and Phagocytotic Functions.

Rev Cardiovasc Med

August 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, 453003 Xinxiang, Henan, China.

Myocarditis is a life-threatening inflammatory disorder that affects the cardiac muscle tissue. Current treatments merely regulate heart function but fail to tackle the root cause of inflammation. In myocarditis, the initial wave of inflammation is characterized by the presence of neutrophils.

View Article and Find Full Text PDF

Purpose: To assess the association between skeletal-muscle endurance performance and mitochondrial oxidative capacity of the hamstrings as respectively measured by biomechanical and physiological standards.

Methods: Nineteen (12 men and 7 women) healthy, young, recreationally active participants enrolled in our study. Participant characteristics comprised a mean and SD age of 21.

View Article and Find Full Text PDF

Uncovering a novel role of nAChRs in oxidative stress-mediated vascular dysfunction in COPD.

Redox Biol

August 2025

Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. Electronic

Tobacco smoke is the main risk factor for the development of chronic obstructive pulmonary disease (COPD). Despite current therapies alleviate symptoms there are limitations in the efficacy of treatments to curb its cardiovascular morbidities, particularly vascular dysfunction and the development of pulmonary hypertension. Our previous studies demonstrate that cigarette smoke directly contributes to pulmonary arterial dysfunction.

View Article and Find Full Text PDF