Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recessive variants of are a common cause of hereditary hearing impairment and are responsible for non-syndromic enlarged vestibular aqueducts and Pendred syndrome. Patients with bi-allelic variants often suffer from fluctuating hearing loss and recurrent vertigo, ultimately leading to severe to profound hearing impairment. However, there are currently no satisfactory prevention or treatment options for this condition. The CRISPR/Cas9 genome-editing technique is a well-known tool for correcting point mutations or manipulating genes and shows potential therapeutic applications for hereditary disorders. In this study, we used the homology-independent targeted integration (HITI) strategy to correct the c.919-2A>G variant, the most common variant in the Han Chinese population. Next-generation sequencing was performed to evaluate the editing efficiency of the HITI strategy. The results showed that only 0.15% of the reads successfully exhibited HITI integration, indicating that the c.919-2 region may not be a suitable region for HITI selection. This suggests that other site selection or insertion strategies may be needed to improve the efficiency of correcting the c.919-2A>G variant. This experience may serve as a valuable reference for other researchers considering CRISPR target design in this region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12155412PMC
http://dx.doi.org/10.3390/ijms26114980DOI Listing

Publication Analysis

Top Keywords

c919-2a>g variant
12
homology-independent targeted
8
targeted integration
8
hearing impairment
8
hiti strategy
8
low efficiency
4
efficiency homology-independent
4
integration crispr/cas9
4
crispr/cas9 correction
4
correction vicinity
4

Similar Publications

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF

Low-coverage sequencing refers to sequencing DNA of individuals to a low depth of coverage (e.g., 0.

View Article and Find Full Text PDF

Aspects of Genetic Diversity, Host Specificity and Public Health Significance of Single-Celled Intestinal Parasites Commonly Observed in Humans and Mostly Referred to as 'Non-Pathogenic'.

APMIS

September 2025

Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.

Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.

View Article and Find Full Text PDF

Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.

View Article and Find Full Text PDF

Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.

View Article and Find Full Text PDF