98%
921
2 minutes
20
Lipids are a complex class of biomolecules with pivotal roles in the onset, progression, and maintenance of cancers. Lipids, derived from the tumor microenvironment (TME) or synthesized by cancer cells themselves, govern a large variety of pro-tumorigenic functions. In recent years, lipid metabolism and the reprogramming of liver cancer cells have received increasing attention, revealing that altered regulation of diverse lipid species, including triacylglycerols, phospholipids, sphingolipids, ceramides, fatty acids, and cholesterol, actively contributes to the initiation and progression of primary liver cancer. Lipid metabolic reprogramming also modifies the TME by influencing the recruitment, activation, and function of immune cells. Tumor-associated macrophages (TAM) are essential components of TME that sustain cancer growth, promoting invasion and mediating immune evasion. Macrophage polarization toward a tumor-supportive phenotype is associated with metabolic reprogramming. Indeed, lipid accumulation and enhanced fatty acid oxidation in TAM contribute to polarization to a M2 phenotype. In this review, we examine lipid metabolism in hepatocellular carcinoma and cholangiocarcinoma, focusing on TAM lipid metabolic reprogramming.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12153909 | PMC |
http://dx.doi.org/10.3390/cancers17111858 | DOI Listing |
Arch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFPol Merkur Lekarski
September 2025
I. HORBACHEVSKY TERNOPIL NATIONAL MEDICAL UNIVERSITY, TERNOPIL, UKRAINE.
Objective: Aim: To evaluate the state of oxidation processes and morphological changes in the heart of rats with chronic hypodynamia during the development of epinephrine heart damage (EHD)..
Patients And Methods: Materials and Methods: The study was performed on 144 white male Wistar rats.
Sci Adv
September 2025
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Science, Beijing 100101, China.
Insects, unlike vertebrates, use heteromeric complexes of odorant receptors and co-receptors for olfactory signal transduction. However, the secondary messengers involved in this process are largely unknown. Here, we use the olfactory signal transduction of the aggregation pheromone 4-vinylanisole (4VA) as a model to address this question.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDFJ Med Food
September 2025
Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea.
and Pall. are traditionally used to manage cardiovascular health. However, clinical evidence evaluating standardized extracts for specific cardiovascular benefits is still evolving.
View Article and Find Full Text PDF