Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microtubules are essential cytoskeletal components with a broad range of functions in which the structure and dynamics of their plus-end tips play critical roles. Existing mechanistic models explain the tips curving dynamics in different ways: the allosteric model suggests that GTP hydrolysis induces conformational changes in tubulin subunits that destabilize the lattice, leading to protofilament curving and depolymerization, while the lattice model posits that GTP hydrolysis directly destabilizes the microtubule lattice. However, the effect of GTP hydrolysis on the curving dynamics of microtubule tips remains incompletely understood. In this study, we employed a multiscale modeling approach, combining all-atom molecular dynamics simulations with Brownian dynamics simulations, to investigate the relaxation of microtubule plus-end tips into curved configurations. Our results show that both GDP- and GTP-bound tips exhibit an outward bending of protofilaments into curved, ram's horn-like structures, characterized by a linear relationship between curvature and distance from the plus-end tip. These observations align with experimental cryo-ET images of microtubule plus-end tips in different nucleotide states. Collectively, our findings suggest that the outward bending of protofilaments at the plus-end tip is an intrinsic feature of microtubules, independent of the nucleotide state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154965 | PMC |
http://dx.doi.org/10.1101/2025.05.23.655844 | DOI Listing |