98%
921
2 minutes
20
T cells rely on short peptides presented by highly polymorphic major histocompatibility complexes (MHCs) to selectively initiate adaptive immune responses. Despite its importance, few techniques can systemically evaluate stable peptide presentation across diverse MHC alleles. Here, we describe a yeast display pipeline that can be deployed to rapidly screen proteomic space to identify class I pMHC binders across many alleles. Through this, we capture unique biological phenomena such as interference with peptide presentation via type IV drug-induced hypersensitivity. We apply this approach to multiple pathogen proteomes (Mtb Type 7S substrates, SARS-CoV-2, Dengue, and Zika) to create a high-resolution catalog of potential T cell antigens. Altogether, this platform acts as a flexible tool to generate large unbiased datasets for class I peptide presentation at a speed and scale competitive with the biological systems they represent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12154660 | PMC |
http://dx.doi.org/10.1101/2025.05.24.655874 | DOI Listing |
J Med Case Rep
September 2025
Department of Anesthesiology, LMU University Hospital Munich LMU, Marchioninistrasse 15, 81377, Munich, Germany.
Background: The treatment of critically ill patients in intensive care units is becoming increasingly complex. For example, organ transplants are regularly carried out, the recipients are seriously ill, and the postoperative course can be complicated. This is why organ replacement and hemadsorption procedures are becoming increasingly important.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea. Electronic address:
Modified hyaluronic acid (HA) biomaterials have received considerable attention in recent years, especially in developing innovative therapeutic strategies for targeted disease interventions. HA serves to shield therapeutics from the physiological environment, while enabling safe delivery and promoting uptake into specific cells. As a hydrophilic chain polymer, HA is readily chemically modified into functional biomaterials for drug delivery and cancer immunotherapy.
View Article and Find Full Text PDFActa Histochem
September 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1‑1‑1 Minami‑Kogushi, Ube 755‑8505, Japan. Electronic address:
Cholinergic neurons in the basal forebrain cholinergic nuclei (BFCN) and neostriatum (CPu) play key roles in learning, attention, and motor control. The loss of cholinergic neurons causes major neurodegenerative diseases such as Alzheimer's disease. This study aimed to elucidate the molecular diversity of choline acetyltransferase immunoreactive (ChAT-ir) neurons in these brain regions.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China. Electronic address:
Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).
View Article and Find Full Text PDFMol Pharmacol
August 2025
Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Biomedical Research Center Seltersberg, Justus Liebig University of Giessen, Giessen, Germany. Electronic address:
The myristoylated preS1 domain (myr-preS1) of the hepatitis B virus (HBV) large surface protein is essential for binding to the receptor protein, Na/taurocholate co-transporting polypeptide (NTCP), and for the subsequent internalization of the virus-receptor complex. NTCP, which is expressed in hepatocytes, plays a physiological role in hepatic bile acid transport. Recent cryo-electron microscopy structures of the myr-preS1-NTCP complex were used to analyze virus-receptor interactions at the molecular level.
View Article and Find Full Text PDF