Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Salt stress impacts plant growth and development, threatening agricultural production. The Na/H antiporter SALT OVERLY SENSITIVE 1 (SOS1) functions in cellular ion homeostasis through facilitating Na excretion and is therefore essential for plant salt tolerance. Here, we report that the transcription factors AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 are required for salt-induced SOS1 expression and salt tolerance in Arabidopsis thaliana. ARF7 and ARF19 activate SOS1 transcription by binding to SOS1 coding region rather than its promoter. Additionally, an E3 ubiquitin ligase, CHY ZINC-FINGER AND RING PROTEIN 1 (CHYR1), interacts with and degrades ARF7 and ARF19, dampening SOS1 expression. Upon high salinity, CHYR1 expression is inhibited in plants, stabilizing ARF7 and ARF19 proteins and increasing SOS1 expression. Collectively, our study identifies a transcriptional cis-element within SOS1 coding region recognized by ARF7 and ARF19 and elucidates a molecular mechanism governing ARF7 and ARF19 protein stability and SOS1 expression during plant salt stress response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2025.05.010 | DOI Listing |