98%
921
2 minutes
20
Background And Objective: Attention, cognitive workload/fatigue, and emotional states significantly influence learning outcomes, cognitive performance, and human-machine interactions. However, existing assessment methodologies fail to fully capture the multimodal nature of these cognitive processes, limiting their application in adaptive learning environments. This study presents the Cognitive Lab, a comprehensive multimodal dataset designed to investigate these cognitive processes across real-time learning scenarios. Specifically, it aims to capture and enable the classification of (1) attention and cognitive workload states using standard cognitive tasks, (2) cognitive fatigue arising from prolonged digital activities, and (3) emotional and learning states during interactive lessons.
Methods: The Cognitive Lab dataset consists of three distinct subsets, each developed through specific experimental scenarios targeting different aspects of learning. Dataset 1 comprises recordings from eight participants performing N-Back and mental subtraction tasks, aimed at assessing attention and cognitive workload. Dataset 2 includes data from 10 participants engaged in a digital lesson, complemented by Corsi block-tapping and concentration tasks, to evaluate cognitive fatigue. Lastly, Dataset 3 captures data from 18 participants during an interactive Jupyter Notebook lesson, focusing on emotional states and learning processes. Each scenario combined biosignals (accelerometry, ECG, EDA, EEG, fNIRS, respiration) with Human-Computer Interaction (HCI) features (mouse-tracking, keyboard activity, screenshots). Machine learning models were applied to classify cognitive states, with cross-validation ensuring robust results.
Results: The dataset enabled accurate classification of learning states, achieving up to 87% accuracy in differentiating learning states using mouse-tracking data. Furthermore, it successfully differentiated attention, cognitive workload, and cognitive fatigue states using biosignal and HCI data, with fNIRS, EEG, and ECG emerging as key contributors to classification performance. Variability across participants highlighted the potential for subject-specific calibration to enhance model accuracy.
Conclusions: The Cognitive Lab dataset represents a resource for investigating cognitive phenomena in real-world learning scenarios. Its integration of biosignals and HCI features enables the classification of cognitive states and supports advancements in adaptive learning systems, cognitive neuroscience, and brain-computer interface technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2025.108863 | DOI Listing |
Clin Epigenetics
September 2025
Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.
Background: Work-related stress is a well-established contributor to mental health decline, particularly in the context of burnout, a state of prolonged exhaustion. Epigenetic clocks, which estimate biological age based on DNA methylation (DNAm) patterns, have been proposed as potential biomarkers of chronic stress and its impact on biological aging and health. However, their role in mediating the relationship between work-related stress, physiological stress markers, and burnout remains unclear.
View Article and Find Full Text PDFAlzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFJ Intensive Care
September 2025
German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-Universitat (LMU), University Hospital Grosshadern, Munich, Germany.
Background: Survivors of critical illness frequently face physical, cognitive and psychological impairments after intensive care. Sensorimotor impairments potentially have a negative impact on participation. However, comprehensive understanding of sensorimotor recovery and participation in survivors of critical illness is limited.
View Article and Find Full Text PDFBMC Psychol
September 2025
Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, Jeddah, Saudi Arabia.
Objectives/background: Prior studies have claimed that people engage in compulsive buying in an attempt to deal with stress. Nonetheless, not every stressed person engages in compulsive buying. It is therefore important to investigate the cognitive mechanisms underlying such behavior.
View Article and Find Full Text PDFBMC Psychol
September 2025
Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China.
With the persistence of difficult employment, a large number of college students feel anxious and nervous about job hunting. College students with different family economic status have various feelings and performances when faced with employment, possibly due to subjective social class differences. The present study investigated the employment confidence of 611 undergraduates in Chongqing, aimed to ascertain the overall employment confidence of Chinese college students, and tried to analyze how subjective social class works on the employment confidence of college students and its influencing mechanism.
View Article and Find Full Text PDF