A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

SkipDAEformer: A High-Precision Representation Learning Method for Removing Random Mixed Noise in MCG Signals. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Automated analytical techniques for magnetocardiography (MCG) are essential for diagnosing and predicting cardiovascular diseases. Clinically acquired MCG signals are often contaminated by various types of noise, which negatively impact subsequent signal analysis. However, traditional methods have limitations in denoising long-term MCG signals with complex spatial structures. We propose a high-precision, robust representation learning method based on skip connection multi-scale feature fusion (SkipDAEformer) for effectively removing random mixed noise in MCG signals. SkipDAEformer integrates attention fusion mechanisms into a basic denoising autoencoder to extract and fuse critical temporal and spatial information from each feature map, thus enhancing the model's ability to capture long-range dependencies and spatial features in MCG signals. Meanwhile, we further supplement and refine the semantic information for the feature maps through a global feature fusion method. By fusing multi-scale features from different skip connections, SkipDAEformer can learn more comprehensive representations of MCG signals, enabling the effective separation of clean signals from noise. Experimental results demonstrate that SkipDAEformer outperforms existing methods in denoising performance, channel consistency, feature consistency, and generalization ability and can be extended to a self-supervised learning framework. In actual noise reduction and diagnostic classification tasks, SkipDAEformer shows superior clinical acceptability and diagnostic value, potentially advancing MCG data analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2025.3579060DOI Listing

Publication Analysis

Top Keywords

mcg signals
24
representation learning
8
learning method
8
removing random
8
random mixed
8
mixed noise
8
mcg
8
noise mcg
8
feature fusion
8
signals
7

Similar Publications