98%
921
2 minutes
20
In oxygenic photosynthetic organisms, the light reactions are performed by protein complexes embedded in the lipid bilayer of thylakoid membranes (TMs). The organization of the bulk lipid molecules into bilayer structures provide optimal conditions for the build-up of the proton motive force (pmf) and its utilization for ATP synthesis. However, the lipid composition of TMs is dominated by the non-bilayer lipid species monogalactosyl diacylglycerol (MGDG), and functional plant TMs, besides the bilayer, contain large amounts of non-bilayer lipid phases. Bulk lipids have been shown to be associated with lumenal, stromal-side and marginal-region proteins and proposed to play roles in the self-assembly and photoprotection of the photosynthetic machinery. Furthermore, it has recently been pointed out that the generation and utilization of pmf for ATP synthesis according to the 'protet' or protonic charge transfer model Kell (Biochim Biophys Acta Bioenerg 1865(4):149504, 2024), requires high MGDG content Garab (Physiol Plant 177(2):e70230, 2025). In this study, to gain better insight into the structural and functional roles of MGDG, we employed all atom and coarse-grained molecular dynamics simulations to explore how temperature, hydration levels and varying MGDG concentrations affect the structural and dynamic properties of bilayer membranes constituted of plant thylakoid lipids. Our findings reveal that MGDG promotes increased membrane fluidity and dynamic fluctuations in membrane thickness. MGDG-rich stacked bilayers spontaneously formed inverted hexagonal phases; these transitions were enhanced at low hydration levels and at elevated but physiologically relevant temperatures. It can thus be inferred that MGDG plays important roles in heat and drought stress mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158855 | PMC |
http://dx.doi.org/10.1007/s11120-025-01156-3 | DOI Listing |
J Phys Chem B
September 2025
Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.
The dynamics of the aggregated light-harvesting complex (LHCII) associated with its antenna pigments can be crucial for a transition between light-harvesting and dissipative states, which is pivotal for nonphotochemical quenching (NPQ). To this end, aggregation of pigment-binding LHCII monomers and PsbS-associated trimers in neutral and low lumenal pH respectively, has been investigated when embedded in the plant thylakoid membranes, using coarse-grained molecular dynamics simulations. Both pigment-binding LHCII monomers and PsbS-associated trimers dynamically form and break dimers and higher-order aggregates in thylakoids within the simulation time.
View Article and Find Full Text PDFMar Environ Res
September 2025
Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China; University of Chinese Academ
Phosphorus (P) is a critical limiting nutrient for phytoplankton growth in aquatic ecosystems. Under P-limitation, phytoplankton adapt by remodeling membrane lipids, replacing phospholipids (PLs) with non-P lipids such as sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and betaine lipids (BLs). This mechanism is essential for reevaluating the relationship between phosphate (PO) concentrations and primary productivity.
View Article and Find Full Text PDFCurr Issues Mol Biol
August 2025
State Key Laboratory of Nutrient Use and Management, Jinan 250100, China.
Off-white or yellowish shoots are common in tea plants ( L.), and such albino variations are often accompanied by metabolic reprogramming, including increased contents of amino acids and lower levels of polyphenols. Nonetheless, the molecular mechanisms that underlie these albino variations remain to be fully clarified.
View Article and Find Full Text PDFPlant J
August 2025
College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
Chlorophyll (Chl) b deficiency leads to vulnerability to high light and oxidative stress in wheat plants, while the detailed mechanism by which Chl b is involved in photoprotection remains unclear in plants. In this study, the roles of thylakoid protein composition and complexes in photosynthetic electron transport, photoprotective responses, and energy dissipation were investigated in Chl b-deficient mutant lines (ANK-32A) and the wild type (WT) of wheat. Compared to the WT, ANK-32A showed higher non-photochemical quenching (NPQ), slower state transitions, and a significant decline in the amount of Lhca1-4, Lhcb1-3, and PSII-LHCII supercomplexes at the early growth stage.
View Article and Find Full Text PDFPlant Physiol
August 2025
Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
Land plants have evolved sophisticated regulatory mechanisms to precisely modulate electron flow during photosynthesis that is crucial for protecting the photosynthetic machinery and other cellular components from oxidative photodamage. Non-photochemical quenching (NPQ) serves as a major photoprotective mechanism, dissipating excess absorbed light energy as heat. The chloroplast protein DAY-LENGTH-DEPENDENT DELAYED-GREENING1 (DLDG1), which is specifically conserved in oxygenic phototrophs, plays a pivotal role in controlling NPQ by regulating H+ translocation across the chloroplast envelope membranes.
View Article and Find Full Text PDF