98%
921
2 minutes
20
Microfluidic devices, especially those utilizing polydimethylsiloxane (PDMS) structures, require reliable bonding methods to achieve durable, leak-proof seals. Current bonding techniques, including O plasma treatment, suffer from limitations related to material compatibility and surface roughness sensitivity, which compromise device stability and scalability in complex designs. In this study, we investigate the impact of surface roughness, wax contamination, and the presence of conductive materials on bonding strength in PDMS-based microfluidics. Additionally, we propose a novel bonding method using a flowable, one-component silicone rubber that forms robust seals without plasma treatment or silanization, effectively overcoming the challenges posed by increased surface roughness and material heterogeneity. The bonding method demonstrated significantly enhanced bond strengths across various substrate combinations (PDMS, copper, and FR4), with notable resilience under high pressure. This approach advances microfluidic fabrication by offering a scalable, versatile solution for multi-material bonding applicable in digital microfluidics and beyond.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12150281 | PMC |
http://dx.doi.org/10.1039/d5ra02701b | DOI Listing |
Am J Orthod Dentofacial Orthop
September 2025
Department of Orthodontics, Faculty of Dentistry, Phenikaa University, Duong Noi, Hanoi, Vietnam.
Introduction: This study investigated the effect of sandblasting time and primer type on the shear bond strength of composite attachments to full-contour zirconia crowns.
Methods: A total of 108 zirconia specimens were fabricated and divided into 9 groups (n = 12) according to sandblasting time (10, 30, and 60 seconds) and primer type (silane, 10-methacryloyloxydecyl dihydrogen phosphate [MDP], universal). After sandblasting with 110-μm alumina particles, specimens were primed, and attachments were bonded using a packable composite.
Adv Eng Mater
July 2025
Department of Mechanical Engineering University of Nevada, Las Vegas, NV, US.
Highly contagious respiratory infection diseases such as COVID-19 can be transmitted by inhaling virus laden liquid droplets and short-range aerosols, released by an infected person. Particularly, in hospitals, spraying of the respiratory droplets containing pathogens from the conjunctiva or mucus of a susceptible person plays a key role in transferring the infectious diseases. N95 filtering respirators are a critical personal protective equipment.
View Article and Find Full Text PDFACS Electrochem
September 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
The surface structure of an electrocatalyst plays a crucial role in determining the activity. As a model system, gold has been widely investigated as an electro-oxidation catalyst, although there has been much less research on the oxygen evolution reaction (OER) in the potential region of gold oxidation. Here, we combine voltammetric scanning electrochemical cell microscopy (SECCM) and electron backscatter diffraction (EBSD), at different spatial and angular resolutions, respectively, to correlate the local crystallographic structure of polycrystalline goldfocusing on grains close to (113), (011), (114), and (111) orientationswith the electrocatalytic behavior for the OER.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Hydro Science and Engineering, and Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China. Electronic address:
Hypothesis: On highly cleaned planar surfaces submerged in highly cleaned water, flat surface nanobubbles with an angle of attachment of ∼15 are observed - never on engineering surfaces submerged in plain water, though here unidentified cavitation nuclei are always present and cause low tensile strength.
Experiments: In the present study, surface nanobubbles are generated by standard experimental techniques on a polished steel surface, and we find that the shape and the angles of attachment of the bubbles are influenced by the local substrate topography. These observations align with the theory of non-adsorbed liquid zones, which explains a surface nanobubble as a bubble with a skin of contamination molecules, which bond along the bubble rim at a contact angle of ∼14.
Probiotics Antimicrob Proteins
September 2025
School of Life Science, Liaoning Normal University, Dalian, 116081, China.
Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.
View Article and Find Full Text PDF