Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The seizure episodes result from abnormal and excessive electrical discharges by a group of brain cells. EEG framework-based signal acquisition is the real-time module that records the electrical discharges produced by the brain cells. The electrical discharges are amplified and appear as a graph on electroencephalogram systems. Different neurological disorders are represented as different waves on EEG records.

Method: This paper involves the detection of Epilepsy which appears as rapid spiking on electroencephalogram signals, using feature extraction and machine learning techniques. Various models, such as the Support Vector Machine, K Nearest Neighbor, and random forest, have been trained, and accuracy has been analyzed to predict the seizure.

Result: An average accuracy of 95% has been claimed using the optimized model for epileptic seizure detection during training and validation. During the analysis of multiple models, the 97% accuracy is claimed after testing. Some statistical parameters are calculated to justify the optimized framework.

Discussion: The proposed approach represents a satisfactory contribution in precise detection for smart healthcare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149152PMC
http://dx.doi.org/10.3389/fncom.2025.1545425DOI Listing

Publication Analysis

Top Keywords

electrical discharges
12
epileptic seizure
8
seizure detection
8
brain cells
8
iseizdiag framework
4
framework development
4
development epileptic
4
detection
4
detection healthcare
4
healthcare introduction
4

Similar Publications

Slapping automatism in epileptic seizures: a case series.

Front Hum Neurosci

August 2025

Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.

Background: Slapping automatism is a type of automatism observed during epileptic seizures, but its underlying electrophysiological mechanisms remain poorly understood. Stereo-electroencephalography (SEEG) provides a unique opportunity to investigate the associated cortical areas with epileptiform discharges during the slapping automatism.

Case Report: We report five cases of drug-resistant epilepsy in which SEEG recordings captured slapping automatism.

View Article and Find Full Text PDF

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF

This study investigated the correlation between the strength of correlated effective neural drive (END) to the antagonistic muscles and the fluctuations in neural/electrical and mechanical output around the joint during steady co-contraction, and whether the correlated END strength estimated from conventional surface EMG is correlated with that determined from motor unit (MU) discharges. Fourteen young male participants performed isometric steady co-contractions with their medial gastrocnemius and tibialis anterior muscles at 10% of maximal EMG while sitting. Correlated END strength was quantified as the maximum value of the cross-correlation function between the conventional surface EMG signals and between MU discharges decomposed from high-density surface EMG of each muscle.

View Article and Find Full Text PDF

Although glutamatergic and GABAergic synapses are important in seizure generation, the contribution of non-synaptic ionic and electrical mechanisms to synchronization of seizure-prone hippocampal neurons remains unclear. Here, we developed a physiologically relevant model to study these mechanisms by inducing prolonged seizure-like discharges (SLDs) in hippocampal slices from male rats through modest, sustained ionic manipulations. Specifically, we reduced extracellular calcium to 0.

View Article and Find Full Text PDF

Plasma-Driven Decomposition of HAN-Based Ionic Liquids.

ACS Omega

September 2025

Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States.

A nanosecond pulse transient plasma is employed to initiate and control the exothermic decomposition of ionic liquids, namely, a mixture of hydroxylammonium nitrate (HAN) and 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM]/[EtSO], as well as some noncombustible ionic liquids. Here, the plasma is discharged in a cylindrical geometry with a coaxial center wire electrode. High voltage (20 kV) nanosecond pulses (20 ns) at various frequencies up to 10 kHz produce a plasma discharge in the ionic liquid that initiates its nonthermal decomposition.

View Article and Find Full Text PDF