Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lipid nanoparticles (LNPs), composed of ionizable amino lipids, phosphatidylcholines (PC) lipids, and cholesterol, have shown promise as delivery vehicles for therapeutic oligonucleotides in various applications, including cancer immunotherapies, cellular reprogramming, genome editing, and viral vaccines (, COVID-19 vaccines). However, the molecular characterization of ionizable amino lipids and their assemblies, such as LNPs, both and , remains in its early stages. In particular, studies on LNPs to understand their nanostructure have been limited due to the need for accurate coarse-grained (CG) models. In this study, we expand the SPICA force field to develop a more reliable and accurate explicit CG model for investigating the structure and properties of model LNPs through experiments. Using this CG model, we performed molecular dynamics simulations on LNP systems with varying helper lipids and pH conditions. Our results reveal bilayer structures with double-stranded DNA (dsDNA) sandwiched between closely apposed monolayers in LNPs at pH 4, while at pH 7, dsDNA molecules are embedded within amorphous domains inside the LNPs. These -optimized microstructures align well with the experimental observations obtained from small-angle X-ray scattering and cryogenic transmission electron microscopy (cryo-TEM). Additionally, a detailed analysis of LNPs containing different helper lipids explains why replacing saturated PC lipids with unsaturated PC lipids enhances the DNA transfection activity. Overall, this study provides a robust CG model for studies of LNPs and offers in-depth molecular-level insights to advance their design for improved stability and efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5c00498DOI Listing

Publication Analysis

Top Keywords

lipid nanoparticles
8
spica force
8
force field
8
lnps
8
ionizable amino
8
amino lipids
8
studies lnps
8
helper lipids
8
lipids
7
study ionizable
4

Similar Publications

Hepatocellular carcinoma (HCC) is a major global health issue, ranking as the sixth most common cancer and a leading cause of cancer-related deaths worldwide. Risk factors for HCC include chronic hepatitis B and C, obesity, alcohol abuse, diabetes, and metabolic disorders. Current treatments, such as surgery, transplantation, and chemotherapy, are often ineffective in advanced stages due to tumor resistance and the inability to target key oncogenic pathways.

View Article and Find Full Text PDF

Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation.

View Article and Find Full Text PDF

The Wnt pathway is an evolutionarily conserved signaling cascade that regulates a wide range of fundamental cellular processes, including proliferation, differentiation, polarity, migration, metabolism, and survival. Due to its central regulatory roles, Wnt signaling is critically involved in the pathophysiology of numerous human diseases. Aberrant activation or insufficient inhibition of this pathway has been causally linked to cancer, degenerative disorders, metabolic syndromes, and developmental abnormalities.

View Article and Find Full Text PDF

Plasminogen activator inhibitor-1 (PAI-1) deficiency is a rare disorder that causes moderate to severe bleeding and cardiac fibrosis, caused by mutation in the gene and no detectable circulating PAI-1 protein. There are currently no therapies that can effectively replace PAI-1 because the protein has a short half-life. An alternative approach to using recombinant protein is to endogenously increase circulating PAI-1 levels using mRNA therapy.

View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) are widely used in drug delivery due to their low toxicity, excellent biocompatibility, and ability to facilitate endosomal escape. A critical factor influencing the in vivo behavior of LNPs is the formation of a biomolecular corona (BC) on their surface. This layer of biomolecules affects key biological processes such as targeting, absorption, distribution, metabolism, and clearance.

View Article and Find Full Text PDF