98%
921
2 minutes
20
Secondary injuries from ischemia‒reperfusion in stroke, such as edema and hemorrhagic transformation, can significantly impact brain function. This study investigated the effects of intermittent theta burst stimulation (iTBS) on neurological function and cerebral blood flow in a mouse model of ischemia‒reperfusion injury. Laser speckle flowmetry was used to assess changes in cortical blood flow before and after ischemia‒reperfusion. Behavioral assessments were conducted to evaluate motor function recovery. The impact of iTBS on neuronal damage and apoptosis in the peri-infarct area was evaluated via Nissl staining and a TUNEL assay. RNA transcriptome sequencing and immunofluorescence staining were performed to investigate the effects of iTBS on microglial and astrocyte activation and the associated inflammatory response. Our findings demonstrated that iTBS significantly mitigated abnormal perfusion in the infarcted hemisphere, reduced neuronal damage and apoptosis in the peri-infarct area, and enhanced motor function in ischemic mice. Furthermore, iTBS promoted the polarization of microglia and astrocytes toward the anti-inflammatory M2 and A2 phenotypes. Therefore, iTBS provides neurovascular protection by modulating microglial and astrocyte activation and regulating the inflammatory response in the peri-infarct area, thereby improving abnormal cerebral blood flow in both the acute and subacute phases after ischemic brain injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12147266 | PMC |
http://dx.doi.org/10.1186/s13041-025-01222-w | DOI Listing |
Biomater Sci
September 2025
School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia.
The increasing use of blood-contacting medical devices has brought about significant advancements in patient care, yet it also presents challenges such as thrombus formation and infection risks. Surface coatings play a vital role in mitigating these side effects, enhancing the safety and effectiveness of such devices. In this study, we introduced a novel coating employing poly(aspartic acid) (PASP), which can be easily applied through various modification pathways.
View Article and Find Full Text PDFInflamm Res
September 2025
Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.
Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.
Minerva Anestesiol
September 2025
Department of Cardiac, Thoracic and Vascular Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania.
Background: Postoperative cognitive dysfunction (POCD) occurs in 20% to 80% of patients following cardiac surgical interventions. The incidence of delirium is from 20% to 50%. Impaired cerebral autoregulation (CA) during cardiopulmonary bypass (CPB) contributes to these issues.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, United States.
Purpose: To assess macular choriocapillaris (CC) metrics in healthy volunteers (HVs) without ocular disease and demonstrate CC variations in patients with inherited retinal dystrophies (IRDs) using adaptive optics optical coherence tomography angiography (AO-OCTA).
Methods: Twenty-one HVs and three IRD patients were imaged. Macular variation in 20 HVs in CC metrics (CC density, CC diameter, CC tortuosity, void diameter, void area, lobule count, lobule area, and RPE-CC distance) were assessed by imaging a 28° strip of overlapping AO-OCTA volumes (3° × 3°) from the optic nerve head to the temporal macula.
J Pediatr Hematol Oncol
September 2025
Children's Hospital of Michigan, Division of Hematology/Oncology.
Glanzmann thrombasthenia (GT) is a rare autosomal recessive platelet disorder characterized by abnormalities in platelet aggregation, resulting from quantitative or qualitative defects in integrins αIIb and β3. Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only potentially curative therapeutic approach for severe GT. In this report, we present 2 children with GT that underwent successful allo-HSCT, along with 2008 to 2022 data from the Center for International Blood and Marrow Transplant Research and a summary of the existing literature providing further evidence that allo-HSCT can be a curative approach that prevents severe and life-threatening bleeding in GT.
View Article and Find Full Text PDF