Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The networked architecture of the brain promotes synchrony among neuronal populations. These communication patterns can be mapped using functional imaging, yielding functional connectivity (FC) networks. While most studies use Pearson's correlations by default, numerous pairwise interaction statistics exist in the scientific literature. How does the organization of the FC matrix vary with the choice of pairwise statistic? Here we use a library of 239 pairwise statistics to benchmark canonical features of FC networks, including hub mapping, weight-distance trade-offs, structure-function coupling, correspondence with other neurophysiological networks, individual fingerprinting and brain-behavior prediction. We find substantial quantitative and qualitative variation across FC methods. Measures such as covariance, precision and distance display multiple desirable properties, including correspondence with structural connectivity and the capacity to differentiate individuals and predict individual differences in behavior. Our report highlights how FC mapping can be optimized by tailoring pairwise statistics to specific neurophysiological mechanisms and research questions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240839PMC
http://dx.doi.org/10.1038/s41592-025-02704-4DOI Listing

Publication Analysis

Top Keywords

functional connectivity
8
pairwise statistics
8
benchmarking methods
4
methods mapping
4
mapping functional
4
connectivity brain
4
brain networked
4
networked architecture
4
architecture brain
4
brain promotes
4

Similar Publications

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Exploring Differentially Expressed Genes and Understanding the Underlying Mechanisms in Glioblastoma.

Biochem Genet

September 2025

Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University Cerrahpasa, Kocamustafapasa, 34098, Istanbul, Turkey.

Glioblastoma is the most aggressive and malignant tumor of the central nervous system. Current treatment options, including surgical excision, radiotherapy, and chemotherapy, have Limited efficacy, with a median survival rate of approximately 15 months. To develop novel therapeutics, it is crucial to understand the underlying molecular mechanisms driving glioblastoma.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF

The microbiome and volatile organic compounds reflecting the state of decomposition in an indoor environment.

Sci Justice

September 2025

Department of Chemistry, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States. Electronic address:

Given that a variety of factors can affect the decomposition process, it can be difficult to determine the post-mortem interval (PMI). The process is highly dependent on microbial activity, and volatile organic compounds (VOCs) are a by-product of this activity. Given both have been proposed to assist in PMI determination, a deeper understanding of this relationship is needed.

View Article and Find Full Text PDF

The current study sought to explore the impact of a novel noninvasive treatment called transcranial photobiomodulation (PBM) on resting-state functional connectivity (rsFC) of the cerebellum in individuals with a history of repetitive head acceleration events (RHAEs). RHAEs are associated with cumulative neurological compromise, including chronic alterations in rsFC; however, few treatments have been investigated to mitigate these effects. A recent study by our team demonstrated that PBM treatment led to improvements in measures of balance and motor function in adults with RHAE exposure.

View Article and Find Full Text PDF