Objective: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depression, but not for all patients. Accurate treatment response prediction could lower treatment burden. Research suggests machine learning trained with electroencephalography (EEG) data may predict response, but a limited range of features have been tested.
View Article and Find Full Text PDFThe neural mechanisms of consciousness remain elusive. Previous studies on both human and non-human animals, through manipulation of level of conscious arousal, have reported that specific time-series features correlate with level of consciousness, such as spectral power in certain frequency bands. However, such features often lack principled, theoretical justifications as to why they should be related with level of consciousness.
View Article and Find Full Text PDFThe networked architecture of the brain promotes synchrony among neuronal populations. These communication patterns can be mapped using functional imaging, yielding functional connectivity (FC) networks. While most studies use Pearson's correlations by default, numerous pairwise interaction statistics exist in the scientific literature.
View Article and Find Full Text PDFThe intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode.
View Article and Find Full Text PDFGenerative models of brain activity have been instrumental in testing hypothesized mechanisms underlying brain dynamics against experimental datasets. Beyond capturing the key mechanisms underlying spontaneous brain dynamics, these models hold an exciting potential for understanding the mechanisms underlying the dynamics evoked by targeted brain stimulation techniques. This paper delves into this emerging application, using concepts from dynamical systems theory to argue that the stimulus-evoked dynamics in such experiments may be shaped by new types of mechanisms distinct from those that dominate spontaneous dynamics.
View Article and Find Full Text PDFPLoS Comput Biol
December 2024
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures.
View Article and Find Full Text PDFJAMA Psychiatry
February 2025
Importance: Large-scale genome-wide association studies (GWAS) should ideally inform the development of pharmacological treatments, but whether GWAS-identified mechanisms of disease liability correspond to the pathophysiological processes targeted by current pharmacological treatments is unclear.
Objective: To investigate whether functional information from a range of open bioinformatics datasets can elucidate the relationship between GWAS-identified genetic variation and the genes targeted by current treatments for psychiatric disorders.
Design, Setting, And Participants: Associations between GWAS-identified genetic variation and pharmacological treatment targets were investigated across 4 psychiatric disorders-attention-deficit/hyperactivity disorder, bipolar disorder, schizophrenia, and major depressive disorder.
Non-stationary systems are found throughout the world, from climate patterns under the influence of variation in carbon dioxide concentration to brain dynamics driven by ascending neuromodulation. Accordingly, there is a need for methods to analyze non-stationary processes, and yet, most time-series analysis methods that are used in practice on important problems across science and industry make the simplifying assumption of stationarity. One important problem in the analysis of non-stationary systems is the problem class that we refer to as parameter inference from a non-stationary unknown process (PINUP).
View Article and Find Full Text PDFThe brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures.
View Article and Find Full Text PDFBackground: Autistic traits are often reported to be elevated in children diagnosed with attention-deficit/hyperactivity disorder (ADHD). However, the distribution of subclinical autistic traits in children with ADHD has not yet been established; knowing this may have important implications for diagnostic and intervention processes. The present study proposes a preliminary model of the distribution of parent-reported ADHD and subclinical autistic traits in two independent samples of Australian children with and without an ADHD diagnosis.
View Article and Find Full Text PDFScientists have developed hundreds of techniques to measure the interactions between pairs of processes in complex systems, but these computational methods-from contemporaneous correlation coefficients to causal inference methods-define and formulate interactions differently, using distinct quantitative theories that remain largely disconnected. Here we introduce a large assembled library of 237 statistics of pairwise interactions, and assess their behavior on 1,053 multivariate time series from a wide range of real-world and model-generated systems. Our analysis highlights commonalities between disparate mathematical formulations of interactions, providing a unified picture of a rich interdisciplinary literature.
View Article and Find Full Text PDFPrevious research has examined resting electroencephalographic (EEG) data to explore brain activity related to meditation. However, previous research has mostly examined power in different frequency bands. The practical objective of this study was to comprehensively test whether other types of time-series analysis methods are better suited to characterize brain activity related to meditation.
View Article and Find Full Text PDFUnderstanding how the brain's macroscale dynamics are shaped by underlying microscale mechanisms is a key problem in neuroscience. In animal models, we can now investigate this relationship in unprecedented detail by directly manipulating cellular-level properties while measuring the whole-brain response using resting-state fMRI. Here, we focused on understanding how blood-oxygen-level-dependent (BOLD) dynamics, measured within a structurally well-defined striato-thalamo-cortical circuit in mice, are shaped by chemogenetically exciting or inhibiting D1 medium spiny neurons (MSNs) of the right dorsomedial caudate putamen (CPdm).
View Article and Find Full Text PDFSystematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown.
View Article and Find Full Text PDFJAMA Psychiatry
December 2023
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity.
View Article and Find Full Text PDFObsessive-compulsive disorder (OCD) and pathological gambling (PG) are accompanied by deficits in behavioural flexibility. In reinforcement learning, this inflexibility can reflect asymmetric learning from outcomes above and below expectations. In alternative frameworks, it reflects perseveration independent of learning.
View Article and Find Full Text PDFSystematic spatial variation in micro-architecture is observed across the cortex. These micro-architectural gradients are reflected in neural activity, which can be captured by neurophysiological time-series. How spontaneous neurophysiological dynamics are organized across the cortex and how they arise from heterogeneous cortical micro-architecture remains unknown.
View Article and Find Full Text PDFModern brainwide transcriptional atlases provide unprecedented opportunities for investigating the molecular correlates of brain organization, as quantified using noninvasive neuroimaging. However, integrating neuroimaging data with transcriptomic measures is not straightforward, and careful consideration is required to make valid inferences. In this article, we review recent work exploring how various methodological choices affect 3 main phases of imaging transcriptomic analyses, including 1) processing of transcriptional atlas data; 2) relating transcriptional measures to independently derived neuroimaging phenotypes; and 3) evaluating the functional implications of identified associations through gene enrichment analyses.
View Article and Find Full Text PDFNoninvasive neuroimaging is a powerful tool for quantifying diverse aspects of brain structure and function in vivo, and it has been used extensively to map the neural changes associated with various brain disorders. However, most neuroimaging techniques offer only indirect measures of underlying pathological mechanisms. The recent development of anatomically comprehensive gene expression atlases has opened new opportunities for studying the transcriptional correlates of noninvasively measured neural phenotypes, offering a rich framework for evaluating pathophysiological hypotheses and putative mechanisms.
View Article and Find Full Text PDFThe widely used guidelines for sleep staging were developed for the visual inspection of electrophysiological recordings by the human eye. As such, these rules reflect a limited range of features in these data and are therefore restricted in accurately capturing the physiological changes associated with sleep. Here we present a novel analysis framework that extensively characterizes sleep dynamics using over 7700 time-series features from the hctsa software.
View Article and Find Full Text PDFFront Comput Neurosci
April 2022
New brain atlases with high spatial resolution and whole-brain coverage have rapidly advanced our knowledge of the brain's neural architecture, including the systematic variation of excitatory and inhibitory cell densities across the mammalian cortex. But understanding how the brain's microscale physiology shapes brain dynamics at the macroscale has remained a challenge. While physiologically based mathematical models of brain dynamics are well placed to bridge this explanatory gap, their complexity can form a barrier to providing clear mechanistic interpretation of the dynamics they generate.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2022