Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Optically generated microwaves exhibit unprecedented low noise, benefiting applications such as communications, radar, instrumentation, and metrology. To date, the purest microwave signals are produced using optical frequency division with femtosecond mode-locked lasers. However, their typical repetition rates of hundreds of MHz require multiplication methods to reach the microwave domain. Here, we introduce a miniaturized photonic integrated circuit-based interleaver, achieving a 64-fold multiplication of the repetition rate from 216 MHz to 14 GHz in Ku-Band. With the interleaver, the generated microwave power was improved by 35 dB, with a phase noise floor reduced by more than 10 folds by alleviating photodetector saturation. Based on a low-loss and high-density SiN waveguides, six cascaded stages of Mach-Zehnder interferometers with optical delay lines up to 33 centimeters long are fully integrated into a compact chip. Our result can significantly reduce the cost and footprint of mode-locked-laser-based microwave generation, enabling field deployment in aerospace and communication applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144144 | PMC |
http://dx.doi.org/10.1038/s41467-025-59794-z | DOI Listing |