Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Validation of threshold-based PET segmentation and PET quantification is typically performed with fillable phantoms. Theoretical considerations show that the inactive walls of the phantom cavities introduce a contrast dependence of the volume-reproducing threshold (VRT), potentially leading to segmentation errors and therefore miscalculations of target volumes. The goal of this study was to experimentally show the contrast independence of the VRT when using wall-less phantoms.

Results: Radioactive spheres were produced according to NEMA specifications (D = 10/13/17/22/28/37 mm) using a stereolithographic (SLA) 3D printer. For comparison, hollow spheres were filled with a similar activity concentration. Image data from both sphere types were acquired with five different signal-to-background ratios (SBR = 2/4/6/8/10) using a Siemens mCT 20 and a Biograph 64 TruePoint PET/CT system. Results from wall-less and fillable spheres were compared to evaluate contrast dependence and segmentation accuracy based on VRT and intensity profiles. Wall-less phantoms demonstrated consistent VRT values, with a coefficient of variation of 2% over all SBRs, indicating independence from contrast. Conversely, fillable phantoms exhibited significant VRT variability, with a coefficient of variation (CV) of 9% over all SBRs and up to 40% volume overestimation at low contrast. Additionally, activity distribution in the printed spheres was evaluated using PET-based statistical analysis and autoradiography. The PET intensity distribution in the printed material was highly uniform (CV = 4.2%), with a Kullback-Leibler divergence near zero and no statistically significant difference to the fillable spheres. Autoradiography revealed microscopic regions with elevated counts, showing a CV of 11.7%, which was effectively reduced to 2.4% after Gaussian filtering.

Conclusions: The theoretical predictions of a significant influence of inactive walls in low-contrast images and contrast-independent VRT in wall-less phantoms were successfully confirmed. SLA 3D printing of phantoms is a promising method for the reliable evaluation of PET quantification methods, particularly in low-contrast scenarios commonly encountered in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144006PMC
http://dx.doi.org/10.1186/s40658-025-00768-xDOI Listing

Publication Analysis

Top Keywords

pet quantification
8
fillable phantoms
8
inactive walls
8
contrast dependence
8
vrt wall-less
8
fillable spheres
8
wall-less phantoms
8
coefficient variation
8
variation sbrs
8
distribution printed
8

Similar Publications

Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.

View Article and Find Full Text PDF

Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is increasingly recognized as a multifactorial disorder with vascular contributions, including a pro-coagulant state marked by fibrin deposition in the brain. Fibrin accumulation may exacerbate cerebral hypoperfusion and neuroinflammation, leading to neurodegeneration. Identifying patients with this pathology could enable targeted anticoagulant therapy.

View Article and Find Full Text PDF

Background: Animal models of nerve compression have revealed neuroinflammation not only at the entrapment site, but also remotely at the spinal cord. However, there is limited information on the presence of neuroinflammation in human compression neuropathies. The objectives of this study were to: (1) assess which tracer kinetic model most optimally quantified [C]DPA713 uptake in the spinal cord and neuroforamina in patients with painful cervical radiculopathy, (2) evaluate the performance of linearized methods (e.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF