98%
921
2 minutes
20
Temperature is a universal environmental constraint and organisms have evolved diverse mechanisms of thermotolerance. A central feature of thermophiles relative to mesophiles is a universal shift in protein stability, implying that it is a major constituent of thermotolerance. However, organisms have also evolved extensive buffering systems, such as those that disaggregate and refold denatured proteins and enable survival of heat shock. Here, we show that both cellular and protein structural changes contribute to divergence in protein thermostability between two closely related Saccharomyces species that differ by 8 °C in their thermotolerance. Using thermal proteomic profiling we find that 85% of S. cerevisiae proteins are more stable than their S. uvarum homologs and there is a 1.6 °C shift in average protein melting temperature. In an interspecific hybrid of the two species, S. cerevisiae proteins retain their thermostability, while the thermostability of their S. uvarum homologs is enhanced, indicating that cellular context contributes to protein stability differences. By purifying orthologous proteins, we show that amino acid substitutions underlie melting temperature differences for two proteins, Guk1 and Aha1. Amino acid substitutions are also computationally predicted to contribute to stability differences for most of the proteome. Our results imply that widespread changes in protein thermostability accompany the evolution of thermotolerance between closely related species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227239 | PMC |
http://dx.doi.org/10.1093/molbev/msaf137 | DOI Listing |
J Agric Food Chem
September 2025
School of Chemical Engineering and Technology, Zhengzhou University, Zhengzhou 450001, China.
d-Amino acid oxidase from (DAAO) is valuable for pharmaceutical and chemical synthesis due to its high enantioselectivity, but its poor thermostability limits extensive application. This study proposed a synergistic strategy of "sequence consensus design coupled with structure modification" to enhance DAAO thermostability. Through homologous sequence analysis and greedy algorithm-based optimization, a triple mutant M3 (S18T/V7I/Y132F) was obtained, showing a 3.
View Article and Find Full Text PDFJ Biomol Struct Dyn
September 2025
Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
A thermostable paraoxonase (S3wahi-PON) from sp. strain S3wahi was recently characterised and shown to possess stability across a broad temperature range. This study expands upon the initial biochemical characterisation of S3wahi-PON by investigating the structural determinants and conformational adaptability that contribute to its thermostability, using an integrated approach that combines biophysical techniques and molecular dynamics (MD) simulations across a temperature range of 10 °C to 90 °C.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India. Electronic address:
The UPF0235 UniProt family proteins are conserved across archaea, bacteria, and eukaryotes; however, they remain functionally uncharacterized. Here, we report the high resolution (1.3 Å) crystal structure of UPF0235 protein (PF1765, UniProt: Q8U052) from Pyrococcus furiosus.
View Article and Find Full Text PDFTrends Biochem Sci
September 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy; Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari 70126, Italy. Electronic address:
The rise of AlphaFold and similar structure predictors has made it possible to determine the 3D structure of almost any protein from its amino acid sequence. Residue interaction networks (RINs), graphs where residues are represented as nodes and interactions as edges, provide a powerful framework for analyzing and interpreting this surge in structural data. Here, we provide a comprehensive introduction to RINs, exploring different approaches to constructing and analyzing them, including their integration with molecular dynamics (MD) simulations and artificial intelligence (AI).
View Article and Find Full Text PDFCarbohydr Res
September 2025
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address:
The growing prevalence of treatment-resistant Candida species highlights an urgent need for innovative antifungal therapies. The current range of antifungals, limited to polyenes, azoles, and echinocandins, are becoming insufficient due to the rise of resistance, including cross-resistance among fungal strains. Marine environment is an underexplored reservoir of unique enzymes which can be extremophilic.
View Article and Find Full Text PDF