98%
921
2 minutes
20
Transfer hydrocarbonylation of alkenes could streamline the synthesis of value-added carbonylated molecules by avoiding the use of pressurized toxic CO. Existing methods, however, are limited to the use of alcohol-derived formates or anhydrides as CO and nucleophile-surrogates, because the parallel mechanism does not work for other transfer carbonylation reagents comprising nucleophilic fragments with higher coordination affinities to transition metals. Herein, we present a novel visible-light-driven strategy to address this challenge by promoting the ligand exchange via facilitating the dissociation of CO instead of nucleophiles, upon which was also an efficient transfer hydrothiocarbonylation of olefins with thioformates successfully established. The protocol features mild reaction conditions, excellent regioselectivities, broad functional group compatibilities, and vital synthetic efficacy. The kinetic analysis unveiled a striking linear correlation between the product concentration and the time-squared. Furthermore, the kinetic behaviors observed for the substrates were all consistent with the rate law derived from the proposed mechanism. These results demonstrated the pivotal importance of rapid CO dissociation via light excitation to suppress the side reaction of premature reductive elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202509228 | DOI Listing |
J Biomol NMR
September 2025
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFInorg Chem
September 2025
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, P. R. China.
Precisely structured nanoclusters provide ideal platforms for elucidating structural evolution and structure-activity relationships. However, mechanistic understanding of dynamic core-shell rearrangements has long been impeded by the elusive nature of intermediates during transformation processes. Here, we show that ligand engineering-driven asymmetric thiolate exchange enables atomic-level visualization of structural evolution, thereby overcoming the long-standing challenge of intermediate capture.
View Article and Find Full Text PDFChem Asian J
September 2025
Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh, 491001, India.
Self-healing polymeric coatings represent a transformative class of smart materials capable of autonomously or stimuli-responsively repairing mechanical or environmental damage, thereby significantly extending the operational lifespan of protected substrates. This review systematically elucidates the underlying mechanisms and chemistries enabling self-healing behavior, encompassing both extrinsic strategies such as microcapsules, microvascular networks, and corrosion inhibitor reservoirs and intrinsic approaches based on dynamic covalent (e.g.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Recovery of critical rare earth elements from complex mixtures has long been realized via solvent extraction, where ions in an aqueous phase are separated into an organic phase using amphiphilic ligands. While a great deal of effort has been placed on understanding this forward reaction, substantial knowledge gaps in the back-extraction process remain. This includes the mechanism of interfacial dissociation and transport back into a highly acidic aqueous phase for further processing.
View Article and Find Full Text PDF