98%
921
2 minutes
20
Green macroalgae within the order Bryopsidales lack the fundamental photoprotective mechanisms of green algae, the xanthophyll cycle and energy-dependent dissipation of excess light. Here, by measuring chlorophyll fluorescence at 77 K after specific light treatments, we show that Bryopsidales algae also lack state transitions, another ubiquitous photoprotection mechanism present in other green algae. Certain Sacoglossa sea slugs can feed on Ulvophyceae algae, including some Bryopsidales, and steal chloroplasts - kleptoplasts - that remain functional inside the animal cells for months without the support of the algal nucleus. Our data reveal that the state transition capacity is not retained in the kleptoplasts of the sea slugs, and we provide evidence that the loss is caused by structural changes during their incorporation by the animals. Enforced chloroplast sphericity was observed in all studied kleptoplastic associations, and we propose that it is a fundamental property supporting long-term retention of kleptoplasts in photosynthetic sea slugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141491 | PMC |
http://dx.doi.org/10.1038/s42003-025-08305-3 | DOI Listing |
Curr Biol
September 2025
Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany; Research Training Group 2984 Evolutionary Genomics: Consequences of Biodiverse Reproductive Systems (EvoReSt) and IMPRS Molecular Biology, Department
A new study shows that Sacoglossan sea slugs sequester stolen plastids in arrested phagosomes called 'kleptosomes', redefining how these organelles are compartmentalized and regulated in animal cells. Under normal conditions, the plastids are supported and maintained, but starvation causes their degradation, supporting a potential nutritional role.
View Article and Find Full Text PDFZoolog Sci
August 2025
Meguro Parasitological Museum, Meguro, Tokyo 153-0064, Japan.
Snails of the family Eulimidae are parasites of echinoderms in all five extant classes. Despite long years of taxonomic research on Eulimidae in Japan, their local species richness remains to be investigated, and few studies have focused on a eulimid fauna of a certain echinoderm taxon, even if it is a common species. Here, we conducted a comprehensive sampling of species parasitizing the black sea cucumber in Shirahama, Wakayama, central Japan.
View Article and Find Full Text PDFJ Helminthol
September 2025
Zoological Institute, https://ror.org/05snbjh64Russian Academy of Sciences, Universitetskaya Emb., 1, 199034St. Petersburg, Russian Federation.
The mother sporocyst is the least understood digenean life cycle stage. This study provides the first detailed description of the neuromusculature and reproductive apparatus of mother sporocysts in the hemiuroid digenean , a monoxenous parasite of White Sea mud snails, using transmission electron microscopy and fluorescent staining for muscles, FMRFamide-related peptides (FaRP), and serotonin (5HT). These parthenitae lack a germinal mass and have only a few germinal elements, which explains their limited reproductive potential.
View Article and Find Full Text PDFProc Biol Sci
August 2025
Biogeochemistry Research Center, Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.
Animals produce diverse hard structures for critical functions such as protection, feeding and detoxification. Most animals use the polysaccharide chitin as a framework for this, while vertebrates have switched to using fibrous proteins like collagen and keratin. Vertebrates make structures like skin and horns through a cellular differentiation process called keratinization where cells accumulating keratin die and compact into hard layers-drastically different from chitinous structures, which are secreted directly by living cells.
View Article and Find Full Text PDFZool Stud
December 2024
Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, México. E-mail: (Campos).
The symbiotic pinnotherid crab was rediscovered in Acapulco Guerrero, Mexico, and was found infesting the spindle sea snail (Fasciolaridae), a new host record for this crab. A total of 432 snails were collected in 2020, with a prevalence of 77%, well explained by the host width frequency. Monthly prevalence varied from 54% to 90%, and the mean intensity was 1.
View Article and Find Full Text PDF