Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding aerosol vertical distribution is crucial for aerosol pollution mitigation but is hindered by limited observational data. This study employed multiaxis differential optical absorption spectroscopy (MAX-DOAS) technology with a coupled radiative transfer model-machine learning (RTM-ML) framework to retrieve high-resolution aerosol optical properties in Shanghai. Retrievals indicated vertically decreasing aerosols, peaking in the upper atmosphere in the summer and in the lower atmosphere in the winter. Aerosol hygroscopicity followed similar seasonal patterns but increased with the altitude. Multifactor driving ML models and Shapley additive explanations (SHAP) were used to investigate the drivers to aerosol variation. Results indicated that emissions, east-west transport, and atmospheric oxidation were the main drivers of aerosols below 0.5 km. Above 0.5 km, humidity and atmospheric oxidation became dominant, suggesting that hygroscopic growth and secondary aerosol formation were more prominent. North-south transport also significantly influenced aerosol distribution within 0.5 to 1.6 km. Meteorological normalization emphasized that emission reduction can effectively lower aerosols in the lower atmosphere, while enhanced atmospheric oxidation promoted secondary aerosol formation, particularly in the upper atmosphere. These findings advance the understanding of multiple factors in shaping the vertical aerosol distributions and highlight that emission reduction strategies for addressing compound pollution should be conceived with a multidimensional and multifactorial understanding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c14483 | DOI Listing |